Компьютерная модель машины тьюринга. Программирование машины тьюринга. Недетерминированные машины Тьюринга

И, согласно тезису Чёрча - Тьюринга , способна имитировать всех исполнителей (с помощью задания правил перехода), каким-либо образом реализующих процесс пошагового вычисления, в котором каждый шаг вычисления достаточно элементарен.

То есть всякий интуитивный алгоритм может быть реализован с помощью некоторой машины Тьюринга .

Устройство

В состав машины Тьюринга входит неограниченная в обе стороны лента (возможны машины Тьюринга, которые имеют несколько бесконечных лент), разделённая на ячейки , и управляющее устройство (также называется головкой записи-чтения (ГЗЧ )), способное находиться в одном из множества состояний . Число возможных состояний управляющего устройства конечно и точно задано.

Управляющее устройство может перемещаться влево и вправо по ленте, читать и записывать в ячейки символы некоторого конечного алфавита. Выделяется особый пустой символ, заполняющий все клетки ленты, кроме тех из них (конечного числа), на которых записаны входные данные.

Управляющее устройство работает согласно правилам перехода , которые представляют алгоритм, реализуемый данной машиной Тьюринга. Каждое правило перехода предписывает машине, в зависимости от текущего состояния и наблюдаемого в текущей клетке символа, записать в эту клетку новый символ, перейти в новое состояние и переместиться на одну клетку влево или вправо. Некоторые состояния машины Тьюринга могут быть помечены как терминальные , и переход в любое из них означает конец работы, остановку алгоритма.

Машина Тьюринга называется детерминированной , если каждой комбинации состояния и ленточного символа в таблице соответствует не более одного правила. Если существует пара «ленточный символ - состояние», для которой существует 2 и более команд, такая машина Тьюринга называется недетерминированной .

Описание машины Тьюринга

Конкретная машина Тьюринга задаётся перечислением элементов множества букв алфавита A, множества состояний Q и набором правил, по которым работает машина. Они имеют вид: q i a j →q i1 a j1 d k (если головка находится в состоянии q i , а в обозреваемой ячейке записана буква a j , то головка переходит в состояние q i1 , в ячейку вместо a j записывается a j1 , головка делает движение d k , которое имеет три варианта: на ячейку влево (L), на ячейку вправо (R), остаться на месте (N)). Для каждой возможной конфигурации имеется ровно одно правило (для недетерминированной машины Тьюринга может быть большее количество правил). Правил нет только для заключительного состояния, попав в которое, машина останавливается. Кроме того, необходимо указать конечное и начальное состояния, начальную конфигурацию на ленте и расположение головки машины.

Пример

Пример машины Тьюринга для умножения чисел в унарной системе счисления . Запись правила «q i a j →q i1 a j1 R/L/N» следует понимать так: q i - состояние при котором выполняется это правило, a j - данные в ячейке, в которой находится головка, q i1 - состояние в которое нужно перейти, a j1 - что нужно записать в ячейку, R/L/N - команда на перемещение.

Машина работает по следующему набору правил:

q 0 q 1 q 2 q 3 q 4 q 5 q 6 q 7 q 8
1 q 0 1→q 0 1R q 1 1→q 2 aR q 2 1→q 2 1L q 3 1 → q 4 aR q 4 1→q 4 1R q 7 1→q 2 aR
× q 0 ×→q 1 ×R q 2 ×→q 3 ×L q 4 ×→q 4 ×R q 6 ×→q 7 ×R q 8 ×→q 9 ×N
= q 2 =→q 2 =L q 4 =→q 4 =R q 7 =→q 8 =L
a q 2 a→q 2 aL q 3 a→q 3 aL q 4 a→q 4 aR q 6 a→q 6 1R q 7 a→q 7 aR q 8 a→q 8 1L
* q 0 *→q 0 *R q 3 *→q 6 *R q 4 *→q 5 1R
q 5 →q 2 *L

Описание состояний:

Начало
q 0 начальное состояние. Ищем «x» справа. При нахождении переходим в состояние q1
q 1 заменяем «1» на «а» и переходим в состояние q2
Переносим все «1» из первого числа в результат
q 2 ищем «х» слева. При нахождении переходим в состояние q3
q 3 ищем «1» слева, заменяем её на «а» и переходим в состояние q4.

В случае если «1» закончились, находим «*» и переходим в состояние q6

q 4 переходим в конец (ищем «*» справа), заменяем «*» на «1» и переходим в состояние q5
q 5 добавляем «*» в конец и переходим в состояние q2
Обрабатываем каждый разряд второго числа
q 6 ищем «х» справа и переходим в состояние q7. Пока ищем заменяем «а» на «1»
q 7 ищем «1» или «=» справа

при нахождении «1» заменяем его на «а» и переходим в состояние q2

при нахождении «=» переходим в состояние q8

Конец
q 8 ищем «х» слева. При нахождении переходим в состояние q9. Пока ищем заменяем «а» на «1»
q 9 терминальное состояние (остановка алгоритма)

Умножим с помощью МТ 3 на 2 в единичной системе. В протоколе указаны начальное и конечное состояния МТ, начальная конфигурация на ленте и расположение головки машины (подчёркнутый символ).

Начало. Находимся в состоянии q 0 , ввели в машину данные: *111x11=*, головка машины располагается на первом символе *.

1-й шаг. Смотрим по таблице правил что будет делать машина, находясь в состоянии q 0 и над символом «*». Это правило из 1-го столбца 5-й строки - q 0 *→q 0 *R. Это значит, что мы переходим в состояние q 0 (то есть не меняем его), символ станет «*» (то есть не изменится) и смещаемся по введённому нами тексту «*111x11=*» вправо на одну позицию (R), то есть на 1-й символ 1. В свою очередь, состояние q 0 1 (1-й столбец 1-я строка) обрабатывается правилом q 0 1→q 0 1R. То есть снова происходит просто переход вправо на 1 позицию. Так происходит, пока мы не станем на символ «х». И так далее: берём состояние (индекс при q), берём символ, на котором стоим (подчёркнутый символ), соединяем их и смотрим обработку полученной комбинации по таблице правил.

Простыми словами, алгоритм умножения следующий: помечаем 1-ю единицу 2-го множителя, заменяя её на букву «а», и переносим весь 1-й множитель за знак равенства. Перенос производится путём поочерёдной замены единиц 1-го множителя на «а» и дописывания такого же количества единиц в конце строки (слева от крайнего правого «*»). Затем меняем все «а» до знака умножения «х» обратно на единицы. И цикл повторяется. Действительно, ведь A умножить на В можно представить как А+А+А В раз. Помечаем теперь 2-ю единицу 2-го множителя буквой «а» и снова переносим единицы. Когда до знака «=» не окажется единиц - значит умножение завершено.

Полнота по Тьюрингу

Можно сказать, что машина Тьюринга представляет собой простейшую вычислительную машину с линейной памятью, которая согласно формальным правилам преобразует входные данные с помощью последовательности элементарных действий .

Элементарность действий заключается в том, что действие меняет лишь небольшой фрагмент данных в памяти (в случае машины Тьюринга - лишь одну ячейку), и число возможных действий не бесконечно. Несмотря на простоту машины Тьюринга, на ней можно вычислить всё, что можно вычислить на любой другой машине, осуществляющей вычисления с помощью последовательности элементарных действий. Это свойство называется полнотой .

Один из естественных способов доказательства того, что алгоритмы вычисления, которые можно реализовать на одной машине, можно реализовать и на другой, - это имитация первой машины на второй.

Имитация заключается в следующем. На вход второй машине подаётся описание программы (правил работы) первой машины D {\displaystyle D} и входные данные X {\displaystyle X} , которые должны были поступить на вход первой машины. Нужно описать такую программу (правила работы второй машины), чтобы в результате вычислений на выходе оказалось то же самое, что вернула бы первая машина, если бы получила на вход данные X {\displaystyle X} .

Как было сказано, на машине Тьюринга можно имитировать (с помощью задания правил перехода) все другие исполнители, каким-либо образом реализующие процесс пошагового вычисления, в котором каждый шаг вычисления достаточно элементарен.

На машине Тьюринга можно имитировать машину Поста , нормальные алгоритмы Маркова и любую программу для обычных компьютеров, преобразующую входные данные в выходные по какому-либо алгоритму. В свою очередь, на различных абстрактных исполнителях можно имитировать Машину Тьюринга. Исполнители, для которых это возможно, называются полными по Тьюрингу (Turing complete).

Есть программы для обычных компьютеров, имитирующие работу машины Тьюринга. Но следует отметить, что данная имитация неполная, так как в машине Тьюринга присутствует абстрактная бесконечная лента. Бесконечную ленту с данными невозможно в полной мере имитировать на компьютере с конечной памятью: суммарная память компьютера - оперативная память, жёсткие диски, различные внешние носители данных, регистры и кэш процессора и др. - может быть очень большой, но, тем не менее, всегда конечна. Теоретический предел количества информации, которая может находиться внутри заданной поверхности, с точностью до множителя 1 / ln ⁡ 2 {\displaystyle 1/\ln {2}} равен энтропии чёрной дыры с той же площадью поверхности.

Варианты машины Тьюринга

Модель машины Тьюринга допускает расширения. Можно рассматривать машины Тьюринга с произвольным числом лент и многомерными лентами с различными ограничениями. Однако все эти машины являются полными по Тьюрингу и моделируются обычной машиной Тьюринга.

Машина Тьюринга, работающая на полубесконечной ленте

В качестве примера такого сведения рассмотрим следующую теорему: Для любой машины Тьюринга существует эквивалентная машина Тьюринга, работающая на полубесконечной ленте (то есть на ленте, бесконечной в одну сторону).

Программы для машин Тьюринга записываются в виде таблицы, где первые столбец и строка содержат буквы внешнего алфавита и возможные внутренние состояния автомата (внутренний алфавит). Содержимое таблицы представляет собой команды для машины Тьюринга. Буква, которую считывает головка в ячейке (над которой она находится в данный момент), и внутренне состояние головки определяют, какую команду нужно выполнить. Команда определяется пересечением символов внешнего и внутреннего алфавитов в таблице.

Чтобы задать конкретную машину Тьюринга, требуется описать для нее следующие составляющие :

Внешний алфавит. Конечное множество (обозначают буквой А), элементы которого называются буквами (символами). Одна из букв этого алфавита (например, а0) должна представлять собой пустой символ.

Например, алфавит машины Тьюринга, работающей с двоичными числами, задается в виде A = {0, 1, а0}.

Непрерывную цепочку символов на ленте называют словом .

Автоматом называют устройство, работающее без участия человека. Автомат в машине Тьюринга имеет несколько состояний и при определенных условиях переходит из одного состояния в другое. Множество состояний автомата называют внутренним алфавитом.

Внутренний алфавит . Конечное множество состояний каретки (автомата). Обозначается буквой Q={q1,q2...}. Одно из состояний - q1- должно быть начальным (запускающим программу). Еще одно из состояний (q0) должно быть конечным (завершающим программу) – состояние остановка.

Таблица переходов. Описание поведения автомата (каретки) в зависимости от состояния и считанного символа.

Автомат машины Тьюринга в процессе своей работы управляется программой, во время каждого шага которой выполняются последовательно следующие действия:

Записывать символ внешнего алфавита в ячейку (в том числе и пустой), заменяя находившийся в ней (в том числе и пустой).

Передвигаться на одну ячейку влево или вправо.

Менять свое внутреннее состояние.

Поэтому при составлении программы для каждой пары (символ, состояние) нужно определить три параметра : символ ai из выбранного алфавита A, направление перемещения каретки ("←” - влево, "→” - вправо, "точка” - нет перемещения) и новое состояние автомата qk.



Например , команда 1 "←” q2 обозначает "заменить символ на 1, переместить каретку влево на одну ячейку и перейти в состояние q2”.

Предполагается, что универсальный исполнитель должен уметь доказывать существование или отсутствие алгоритма для той или иной задачи.

Вопрос 28

Тезис Тьюринга - принимаемое без доказательства фундаментальное положение теории алгоритмов, согласно которому всякий алгоритм представим в форме машины Тьюринга.

Программа машины Тьюринга (Р) - совокупность всех команд, Программа представляется в виде таблицы и называется Тьюринговой функциональной схемой.

a 0 a 1 a 2
q 1 а 0 Пq 1 a 1 Пq 1 a 2 Лq 2
q 2 а 1 Пq 2 a 2 Нq 0 a 0 Нq 0

Вопрос 29

Машины Тьюринга с двумя выходами

Предположим, мы расширили определение машины Тьюринга, добавив в устройство управления машины определенное состояние q*. Будем говорить, что если устройство управления переходит в состояние q0 для заданного входного слова х, то машина допускает х. Если устройство управления приходит в состояние q *, то машина запрещает х. Такое устройство будем называть машиной Тьюринга с двумя выходами.

Оказывается, что если заданы две машины Тьюринга T1 и Т2, которые допускают непересекающиеся множества слов Х1 и Х2 соответственно, то всегда можно построить машину Тьюринга T3 с двумя выходами, которая будет допускать Х1 и запрещать Х2. Эти машины Тьюринга будут нам полезны при рассмотрении вопроса о разрешимости.

Множество разрешимо, если существует машина Тьюринга с двумя выходами, которая допускает все элементы этого множества и запрещает элементы, не принадлежащие ему.


Вопрос 30

Многоленточная машина Тьюринга состоит из конечного управления с k ленточными головками, по одной на каждой ленте (рис. 6.4).

Каждая лента бесконечна в обоих направлениях. При одном движении, зависящем от состояния конечного управления и сканируемого символа каждой из ленточных головок, машина может: 1) изменить состояние; 2) напечатать новый символ на каждой из сканируемых ячеек; 3) передвинуть каждую из ее ленточных головок независимо друг от друга на одну ячейку влево, вправо или оставить ее на том же месте.

Сначала входная цепочка имеется только на первой ленте, а все другие лен- ты пусты. Мы не будем определять это устройство более формально, предоставляя это читателю.

Теорема 6.2. Если язык L принимается многоленточной машиной Тьюринга, то он принимается одноленточной машиной Тьюринга. Доказательство. Пусть язык L принимается машиной Тьюринга T1 с k лентами. Построим одноленточную машину Тьюринга T2 с 2k дорожками, по две для каждой из лент машины T1. На одной дорожке записывается содержимое соответствующей ленты машины T1, а другая - пустая, за исключением маркера в ячейке, содержащей символ и сканируемой соответствующей головкой машины T1. Такое устройство для моделирования трех лент посредством одной иллюстрируется рис. 6.5. Конечное управление машины T2 запоминает, какие маркеры головок машины T1 находятся слева, а какие - справа от головки T2. Состояния машины T1 тоже запоминаются в конечном управлении машины T2.

Чтобы моделировать движение машины T1, машина T2 должна посетить каждую ячейку с маркером головки, регистрируя по очереди символ, сканируемый соответствующей головкой T1. Когда машина T2 проходит через маркер головки, она должна уточнять направление, в котором следует искать этот маркер. После сбора всей необходимой информации машина T2 определяет движение машины T1. Затем машина T2 посещает по очереди каждый из маркеров головок снова, изменяя маркированные ячейки и сдвигая маркеры на одну ячейку, если необходимо. Конечно, если новое состояние является принимающим, то машина T2 принимает входную цепочку.

Один из важнейших вопросов современной информатики — существует ли формальный исполнитель, с помощью которого можно имитировать любого формального исполнителя. ответ на этот вопрос был получен почти одновременно двумя выдающимися учеными — А. Тьюрингом и Э. Постом. Предложенные ими исполнители отличались друг от друга, но оказалось, что они могут имитировать друг друга, а главное — имитировать работу любого формального исполнителя.

Что такое формальный исполнитель? Что значит — один формальный исполнитель имитирует работу другого формального исполнителя? Если Вы играли в компьютерные игры — на экране объекты беспрекословно подчиняются командам играющего. Каждый объект обладает набором допустимых команд. В то же время компьютер сам является исполнителем, причем не виртуальным, а реальным. Вот и получается, что один формальный исполнитель имитирует работу другого формального исполнителя.

Рассмотрим работу Машины Тьюринга.

Машина Тьюринга представляет собой бесконечную ленту, поделенную на ячейки, и каретку (считывающе-печатающее устройство), которая движется вдоль ленты.

Таким образом Машина Тьюринга формально описывается набором двух алфавитов:

A={a1, a2, a3, …, an} — внешний алфавит, служит для записи исходных данных

Q={q1, q2, q3,…, qm} — внутренний алфавит, описывает набор состояний считывающе-печатного устройства.

Каждая ячейка ленты может содержать символ из внешнего алфавита A = {a0,a1,…,an} (В нашем случае A={0, 1})

Допустимые действия Машины Тьюринга таковы:

1) записать какой-либо символ внешнего алфавита в ячейку ленты (символ, бывший там до того, затирается)

2) сместиться в соседнюю ячейку

3) сменить состояние на одно из обозначенных символом внутреннего алфавита Q

Машина Тьюринга — это автомат, который управляется таблицей.

Строки в таблице соответствуют символам выбранного алфавита A, а столбцы — состояниям автомата Q = {q0,q1,…,qm}. В начале работы машина Тьюринга находится в состоянии q1. Состояние q0 — это конечное состояние, попав в него, автомат заканчивает работу.

В каждой клетке таблицы, соответствующей некоторому символу ai и некоторому состоянию qj, находится команда, состоящая из трех частей
· символ из алфавита A
· направление перемещения: «>» (вправо), «<» (влево) или «.» (на месте)
· новое состояние автомата

В приведенной выше таблице алфавит A ={0, 1, _} (содержит 3 символа), а внутренний алфавит Q={q1, q2, q3, q4, q0}, q0 — состояние, заставляющее каретку остановиться.

Рассмотрим несколько задач решением. Скачать машину Тьюринга Вы можете на сайте в разделе .

Задача 1. Пусть A={0, 1, _}. На ленте в ячейках находятся символы из алфавита в следующем порядке 0011011. каретка находится над первым символом. Необходимо составить программу, которая заменит 0 на 1, 1 на 0 и вернет каретку в первоначальное положение.

Теперь определимся с состояниями каретки. Я называю их — «желания каретки что-то сделать».

q1) Каретка должна пойти вправо: если видит 0 меняет его на 1 и остается в состоянии q1, если видит 1 — меняет его на 0 и остается в состоянии q1, если видит _ — ворачивается назад на 1 ячейку «желает что-то другое», т.е переходит в состояние q2. Запишем наши рассуждения в таблицу исполнителя. Синтаксис смотрите в справке к программе)

q2) Теперь опишем «желание каретки» q2. Мы должны вернуться в первоначальное положение. Для этого: если видим 1 оставляем ее и остаемся в состоянии q2 (с тем же желанием дойти до конца ряда символов); если видим 0 — оставляем его и продолжаем двигаться влево в состоянии q2; видим _ — сдвигается вправо на 1 ячейку. Вот вы оказались там, где требуется в условии задачи. переходим в состояние q0.

Посмотреть работу программы можно на видео:

Задача 2. Дано: конечная последовательность 0 и 1 (001101011101). Необходимо выписать их после данной последовательности, через пустую ячейку, а в данной последовательности заменить их на 0. Например:

Из 001101011101 получим 000000000000 1111111.

Как видите, семь единиц записались после данной последовательности, а на их местах стоят нолики.

Приступим к рассуждениям. Определим, какие состояния необходимы каретке и сколько.

q1) увидел 1 — исправь на нолик и перейди в другое состояние q2 (новое состояние вводится, чтобы каретка не поменяла на нули все единицы за один проход)

q2) ничего не менять, двигаться к концу последовательности

q3) как только каретка увидела пустую ячейку, она делает шаг вправо и рисует единичку, если она видит единичку — то движется дальше, чтобы подписать символ в конце. Как только нарисовал единицу, переходим в состояние q4

q4) проходим по написанным единицам, ничего не меняя. Как только доходим до пустой ячейки, разделяющей последовательность от единиц, переходим с новое состояние q5

q5) в этом состоянии идем начало последовательности, ничего не меняя. Доходим до пустой ячейки, разворачиваемся и переходим в состояние q1

Состояние q0 каретка примет в том случае, когда она пройдет в состоянии q1 до конца данной последовательности и встретит пустую ячейку.

Получим такую программу:

Работу Машины Тьюринга можете посмотреть на видео ниже.

До сих пор нам было удобно ссылаться на программистский опыт , говоря об алгоритмах, программах, интерпретаторах, пошаговом выполнении и т.д. Это позволяло нам игнорировать детали построения тех или иных алгоритмов под тем предлогом, что читатель их легко восстановит (или хотя бы поверит все-таки не каждый читатель в своей жизни писал интерпретатор паскаля на паскале).

Но в некоторых случаях этого недостаточно. Пусть, например, мы хотим доказать алгоритмическую неразрешимость какой-то задачи, в определении которой ничего не говорится о программах (в этом разделе, например, мы докажем неразрешимость проблемы равенства слов в полугруппах , заданных образующими и соотношениями). Это обычно делается так. Мы показываем, что проблема остановки сводится к этой задаче. Для этого мы моделируем работу произвольного алгоритма в терминах рассматриваемой задачи (что это значит, будет видно из приводимого ниже примера). При этом нам важно, чтобы определение алгоритма было как можно проще.

Таким образом, наш план таков. Мы опишем довольно просто определяемый класс машин (его можно выбирать по-разному, мы будем использовать так называемые машины Тьюринга), затем объявим, что всякая вычислимая функция может быть вычислена на такой машине, а затем покажем, что вопрос об остановке машины Тьюринга можно свести к вопросу о равенстве слов в полугруппе.

Другая причина, по которой важны простые вычислительные модели (таких моделей много разные виды машин Тьюринга, адресные машины и т.п.), связана с теорией сложности вычислений, когда нас начинает интересовать время выполнения программ. Но этот вопрос выходит за рамки классической теории алгоритмов.

Машины Тьюринга: определение

Машина Тьюринга имеет бесконечную в обе стороны ленту , разделенную на квадратики (ячейки ). В каждой ячейке может быть записан некоторый символ из фиксированного (для данной машины) конечного множества , называемого алфавитом данной машины. Один из символов алфавита выделен и называется " пробелом" предполагается, что изначально вся лента пуста, то есть заполнена пробелами.

Машина Тьюринга может менять содержимое ленты с помощью специальной читающей и пишущей головки , которая движется вдоль ленты. В каждый момент головка находится в одной из ячеек. Машина Тьюринга получает от головки информацию о том, какой символ та видит, и в зависимости от этого (и от своего внутреннего состояния) решает, что делать, то есть какой символ записать в текущей ячейке и куда сдвинуться после этого (налево, направо или остаться на месте). При этом также меняется внутреннее состояние машины (мы предполагаем, что машина не считая ленты имеет конечную память , то есть конечное число внутренних состояний). Еще надо договориться, с чего мы начинаем и когда кончаем работу.

Таким образом, чтобы задать машину Тьюринга, надо указать следующие объекты:

Таблица переходов устроена следующим образом: для каждой пары указана тройка . Здесь сдвиг одно из чисел -1 (влево), 0 (на месте) и 1 (направо). Таким образом, таблица переходов есть функция типа S x A -> S x A x {-1,0,1} , определенная на тех парах, в которых состояние не является заключительным.

Остается описать поведение машины Тьюринга. В каждый момент имеется некоторая конфигурация , складывающаяся из содержимого ленты (формально говоря, содержимое ленты есть произвольное отображение Z -> A ), текущей позиции головки (некоторое целое число ) и текущего состояния машины (элемент S ). Преобразование конфигурации в следующую происходит по естественным правилам: мы смотрим в таблице, что надо делать для данного состояния и для данного символа, то есть выясняем новое состояние машины, меняем символ на указанный и после этого сдвигаем головку влево, вправо или оставляем на месте. При этом, если новое состояние является одним из заключительных, работа машины заканчивается. Остается договориться, как мы подаем информацию на вход машины и что считается результатом ее работы. Будем считать, что алфавит машины, помимо пробела, содержит символы 0 и 1 (а также, возможно, еще какие-то символы). Входом и выходом машины будут конечные последовательности нулей и единиц (двоичные слова). Входное слово записывается на пустой ленте, головка машины ставится в его первую клетку, машина приводится в начальное состояние и запускается. Если машина останавливается, результатом считается двоичное слово , которое можно прочесть, начиная с позиции головки и двигаясь направо (пока не появится символ, отличный от 0 и 1 ).

Таким образом, любая машина Тьюринга задает некоторую частичную функцию на двоичных словах. Все такие функции естественно назвать вычислимыми на машинах Тьюринга .

Машины Тьюринга: обсуждение

Разумеется, наше определение содержит много конкретных деталей, которые можно было бы изменить. Например, лента может быть бесконечной только в одну сторону. Можно придать машине две ленты. Можно считать, что машина может либо написать новый символ, либо сдвинуться, но не то и другое вместе. Можно ограничить алфавит , считая, скажем, что в нем должно быть ровно 10 символов. Можно потребовать, чтобы в конце на ленте ничего не было, кроме результата работы (остальные клетки должны быть пусты). Все перечисленные и многие другие изменения не меняют класса вычислимых на машинах Тьюринга функций. Конечно, есть и небезобидные изменения. Например, если запретить машине двигаться налево, то это радикально поменяет дело по существу лента станет бесполезной, так как к старым записям уже нельзя будет вернуться.

Как понять, какие изменения безобидны, а какие нет? Видимо, тут необходим некоторый опыт практического программирования на машинах Тьюринга, хотя бы небольшой. После этого уже можно представлять себе возможности машины, не выписывая программы полностью, а руководствуясь лишь приблизительным описанием. В качестве примера опишем машину, которая удваивает входное слово (изготавливает слово XX , если на входе было слово X ).

Если машина видит пробел ( входное слово пусто), она кончает работу. Если нет, она запоминает текущий символ и ставит пометку (в алфавите помимо символов 0 и 1 будут еще их " помеченные варианты" и ). Затем она движется направо до пустой клетки, после чего пишет там копию запомненного символа. Затем она движется налево до пометки; уткнувшись в пометку, отходит назад и запоминает следующий символ и так далее, пока не скопирует все слово .

Имея некоторый опыт , можно за всеми этими фразами видеть конкретные куски программы для машины Тьюринга. Например, слова " запоминает символ и движется направо" означают, что есть две группы состояний, одна для ситуации, когда запомнен нуль, другая когда запомнена единица , и внутри каждой группы запрограммировано движение направо до первой пустой клетки.

Имея еще чуть больше опыта, можно понять, что в этом описании есть ошибка не предусмотрен механизм остановки, когда все слово будет скопировано, поскольку копии символов ничем не отличаются от символов исходного слова. Ясно и то, как ошибку исправить надо в качестве копий писать специальные символы и , а на последнем этапе все пометки удалить.

77 . Покажите, что функция " обращение", переворачивающая слово задом наперед, вычислима на машине Тьюринга.

Другой пример неформального рассуждения: объясним, почему можно не использовать дополнительных символов, кроме 0 , 1 и пустого символа. Пусть есть машина с большим алфавитом из N символов. Построим новую машину, которая будет моделировать работу старой, но каждой клетке старой будет соответствовать блок из k клеток новой. Размер блока (число k ) будет фиксирован так, чтобы внутри блока можно было бы закодировать нулями и единицами все символы большого алфавита. Исходные символы 0 , 1 и пустой будем кодировать как 0 , за которым идут (k-1) пустых символов, 1 , за которым идут (k-1) пустых символов, и группу из k пустых символов. Для начала надо раздвинуть буквы входного слова на расстояние k , что можно сделать без дополнительных символов (дойдя до крайней буквы, отодвигаем ее, затем дойдя до следующей, отодвигаем ее и крайнюю и так далее); надо только понимать, что можно идентифицировать конец слова как позицию, за которой следует более k пустых символов. Ясно, что в этом процессе мы должны хранить в памяти некоторый конечный объем информации, так что это возможно. После этого уже можно моделировать работу исходной машины по шагам, и для этого тоже достаточно конечной памяти (е конечного числа состояний), так как нам важна только небольшая окрестность головки моделируемой машины. Наконец, надо сжать результат обратно.

В заключение обсуждения приведем обещанный выше аргумент в пользу того, что любая вычислимая функция вычислима на машине Тьюринга. Пусть есть функция , которую человек умеет вычислять. При этом, он, естественно, должен использовать карандаш и бумагу, так как количество информации , которое он может хранить " в уме", ограничено. Будем считать, что он пишет на отдельных листах бумаги. Помимо текущего листа, есть стопка бумаг справа и стопка слева; в любую из них можно положить текущий лист , завершив с ним работу, а из другой стопки взять следующий. У человека есть карандаш и ластик. Поскольку очень мелкие буквы не видны, число отчетливо различимых состояний листа конечно, и можно считать, что в каждый момент на листе записана одна буква из некоторого конечного (хотя и весьма большого) алфавита. Человек тоже имеет конечную память , так что его состояние есть элемент некоторого конечного множества . При этом можно составить некоторую таблицу, в которой записано, чем кончится его работа над листом с данным содержимым, начатая в данном состоянии (что будет на листе, в каком состоянии будет человек и из какой пачки будет взят следующий лист ). Теперь уже видно, что действия человека как раз соответствуют работе машины Тьюринга с большим (но конечным) алфавитом и большим (но конечным) числом внутренних состояний.

Машина Тьюринга - одно из самых интригующих и захватывающих интеллектуальных открытий 20-го века. Это простая и полезная абстрактная модель вычислений (компьютерных и цифровых), которая является достаточно общей для воплощения любой компьютерной задачи. Благодаря простому описанию и проведению математического анализа она образует фундамент теоретической информатики. Это исследование привело к более глубокому познанию цифровых компьютеров и исчислений, включая понимание того, что существуют некоторые вычислительные проблемы, не решаемые на общих пользовательских ЭВМ.

Алан Тьюринг стремился описать наиболее примитивную модель механического устройства, которая имела бы те же основные возможности, что и компьютер. Тьюринг впервые описал машину в 1936 году в статье "О вычислимых числах с приложением к проблеме разрешимости", которая появилась в Трудах Лондонского математического общества.

Машина Тьюринга является вычислительным устройством, состоящим из головки чтения/записи (или «сканера») с бумажной лентой, проходящей через него. Лента разделена на квадраты, каждый из которых несет одиночный символ - "0" или "1". Назначение механизма состоит в том, что он выступает и как средство для входа и выхода, и как рабочая память для хранения результатов промежуточных этапов вычислений. Из чего состоит устройство Каждая такая машина состоит из двух составляющих: Неограниченная лента. Она является бесконечной в обе стороны и разделена на ячейки. Автомат – управляемая программа, головка-сканер для считывания и записи данных. Она может находиться в каждый момент в одном из множества состояний.

Каждая машина связывает два конечных ряда данных: алфавит входящих символов A = {a0, a1, ..., am} и алфавит состояний Q = {q0, q1, ..., qp}. Состояние q0 называют пассивным. Считается, что устройство заканчивает свою работу, когда попадает именно на него. Состояние q1 называют начальным - машина начинает свои вычисления, находясь на старте в нем. Входное слово располагается на ленте по одной букве подряд в каждой позиции. С обеих сторон от него располагаются только пустые ячейки.

Как работает механизм

Машина Тьюринга имеет принципиальное отличие от вычислительных устройств – ее запоминающее приспособление имеет бесконечную ленту, тогда как у цифровых аппаратов такое устройство имеет полосу определенной длины. Каждый класс заданий решает только одна построенная машина Тьюринга. Задачи иного вида предполагают написание нового алгоритма. Управляющее устройство, находясь в одном состоянии, может передвигаться в любую сторону по ленте. Оно записывает в ячейки и считывает с них символы конечного алфавита. В процессе перемещения выделяется пустой элемент, который заполняет позиции, не содержащие входные данные. Алгоритм для машины Тьюринга определяет правила перехода для управляющего устройства. Они задают головке записи-чтения такие параметры: запись в ячейку нового символа, переход в новое состояние, перемещение влево или вправо по ленте.

Свойства механизма

Машина Тьюринга, как и другие вычислительные системы, имеет присущие ей особенности, и они сходны со свойствами алгоритмов: Дискретность. Цифровая машина переходит к следующему шагу n+1 только после того, как будет выполнен предыдущий. Каждый выполненный этап назначает, каким будет n+1. Понятность. Устройство выполняет только одно действие для одной же ячейки. Оно вписывает символ из алфавита и делает одно движение: влево или вправо. Детерминированность. Каждой позиции в механизме соответствует единственный вариант выполнения заданной схемы, и на каждом этапе действия и последовательность их выполнения однозначны. Результативность. Точный результат для каждого этапа определяет машина Тьюринга. Программа выполняет алгоритм и за конечное число шагов переходит в состояние q0. Массовость. Каждое устройство определено над допустимыми словами, входящими в алфавит. Функции машины Тьюринга В решении алгоритмов часто требуется реализация функции. В зависимости от возможности написания цепочки для вычисления, функцию называют алгоритмически разрешимой или неразрешимой. В качестве множества натуральных или рациональных чисел, слов в конечном алфавите N для машины рассматривается последовательность множества В – слова в рамках двоичного кодового алфавита В={0.1}. Также в результат вычисления учитывается «неопределенное» значение, которое возникает при «зависании» алгоритма. Для реализации функции важно наличие формального языка в конечном алфавите и решаемость задачи распознавания корректных описаний.-

Программа для устройства

Программы для механизма Тьюринга оформляются таблицами, в которых первые строка и столбец содержат символы внешнего алфавита и значения возможных внутренних состояний автомата - внутренний алфавит. Табличные данные являются командами, которые воспринимает машина Тьюринга. Решение задач происходит таким образом: буква, считываемая головкой в ячейке, над которой она в данный момент находится, и внутреннее состояние головки автомата обусловливают, какую из команд необходимо выполнять. Конкретно такая команда находится на пересечении символов внешнего алфавита и внутреннего, находящихся в таблице.

Составляющие для вычислений

Чтобы построить машину Тьюринга для решения одной определенной задачи, необходимо определить для нее следующие параметры. Внешний алфавит. Это некоторое конечное множество символов, обозначающихся знаком А, составляющие элементы которого именуются буквами. Один из них - а0 - должен быть пустым. Для примера, алфавит устройства Тьюринга, работающего с двоичными числами, выглядит так: A = {0, 1, а0}. Непрерывная цепочка букв-символов, записываемая на ленту, именуется словом. Автоматом называется устройство, которое работает без вмешательства людей. В машине Тьюринга он имеет для решения задач несколько различных состояний и при определенно возникающих условиях перемещается из одного положения в другое. Совокупность таких состояний каретки есть внутренний алфавит. Он имеет буквенное обозначение вида Q={q1, q2...}. Одно из таких положений - q1 - должно являться начальным, то есть тем, что запускает программу. Еще одним необходимым элементом является состояние q0, которое является конечным, то есть тем, что завершает программу и переводит устройство в позицию остановки.

Таблица переходов.

Эта составляющая представляет собой алгоритм поведения каретки устройства в зависимости от того, каковы в данный момент состояние автомата и значение считываемого символа.-

Алгоритм для автомата

Кареткой устройства Тьюринга во время работы управляет программа, которая во время каждого шага выполняет последовательность следующих действий: Запись символа внешнего алфавита в позицию, в том числе и пустого, осуществляя замену находившегося в ней, в том числе и пустого, элемента. Перемещение на один шаг-ячейку влево или же вправо. Изменение своего внутреннего состояния. Таким образом, при написании программ для каждой пары символов либо положений необходимо точно описать три параметра: ai – элемент из выбранного алфавита A, направление сдвига каретки ("←” влево, "→” вправо, "точка” - отсутствие перемещения) и qk - новое состояние устройства. К примеру, команда 1 "←” q2 имеет значение "заместить символ на 1, сдвинуть головку каретки влево на один шаг-ячейку и сделать переход в состояние q2”.