Сборка и монтаж схемы с тепловым реле. Как самостоятельно подключить тепловое реле — обзор схем. Типовая схема подключения двигателя через магнитный пускатель

Техника, которая оснащается двигателями нуждается в защите. Для этих целей в нее устанавливается система принудительного охлаждения, чтобы обмотки не превышали допустимую температуру. Иногда ее бывает недостаточно, поэтому дополнительно может быть смонтировано тепловое реле. В самоделках его приходится монтировать своими руками. Поэтому важно знать схему подключения теплового реле.

Принцип работы теплового реле

В некоторых случаях тепловое реле может быть встроено в обмотки двигателя. Но чаще всего оно применяется в паре с магнитным пускателем. Это дает возможность продлить срок службы теплового реле. Вся нагрузка по запуску ложится на контактор. В таком случае тепловой модуль имеет медные контакты, которые подключаются непосредственно к силовым входам пускателя. Проводники от двигателя подводятся к тепловому реле. Если говорить просто, то оно является промежуточным звеном, которое анализирует проходящий через него ток от пускателя к двигателю.

В основе теплового модуля лежат биметаллические пластины. Это означает, что они изготавливаются из двух различных металлов. Каждый из них имеет свой коэффициент расширения при воздействии температуры. Пластины через переходник воздействуют на подвижный механизм, который подключен к контактам, уходящим к электродвигателю. При этом контакты могут находиться в двух положениях:

  • нормально замкнутом;
  • нормально разомкнутом.

Первый вид подходит для управления пускателем двигателя, а второй используется для систем сигнализации. Тепловое реле построено на принципе тепловой деформации биметаллических пластин. Как только через них начинает протекать ток, их температура начинает повышаться. Чем с большей силой протекает ток, тем выше поднимается температура пластин теплового модуля. При этом происходит смещение пластин теплового модуля в сторону металла с меньшим коэффициентом теплового расширения. При этом происходит замыкание или размыкание контактов и остановка двигателя.

Важно понимать, что пластины теплового реле рассчитаны на определенный номинальный ток. Это означает, что нагрев до некоторой температуры, не будет вызывать деформации пластин. Если из-за увеличения нагрузки на двигатель произошло срабатывания теплового модуля и отключение, то по истечении определенного промежутка времени, пластины возвращаются в свое естественное положение и контакты снова замыкаются или размыкаются, подавая сигнал на пускатель или другой прибор. В некоторых видах реле доступна регулировка силы тока, которая должна протекать через него. Для этого выносится отдельный рычаг, которым можно выбрать значение по шкале.

Кроме регулятора силы тока, на поверхности может также находиться кнопка с надписью Test . Она позволяет проверить тепловое реле на работоспособность. Ее необходимо нажат при работающем двигателе. Если при этом произошел останов, тогда все подключено и функционирует правильно. Под небольшой пластинкой из оргстекла скрывается индикатор состояния теплового реле. Если это механический вариант, то в нем можно увидеть полоску двух цветов в зависимости от происходящих процессов. На корпусе рядом с регулятором силы тока располагается кнопка Stop . Она в отличие от кнопки Test отключает магнитный пускатель, но контакты 97 и 98 остаются разомкнутыми, а значит сигнализация не срабатывает.

Обратите внимание! Описание приводится для теплового реле LR2 D1314. Другие варианты имеют схожее строение и схему подключения.

Функционировать тепловое реле может в ручном и автоматическом режиме. С завода установлен второй, что важно учитывать при подключении. Для перевода на ручное управление, необходимо задействовать кнопку Reset . Ее нужно повернуть против часовой стрелки, чтобы она приподнялась над корпусом. Разница между режимами заключается в том, что в автоматическом после срабатывания защиты, реле вернется к нормальному состоянию после полного остывания контактов. В ручном режиме это можно сделать с использованием клавиши Reset . Она практически моментально возвращает контактные площадки в нормальное положение.

Тепловое реле имеет и дополнительный функционал, который оберегает двигатель не только от перегрузок по току, но и при отключении или обрыве питающей сети или фазы. Это особенно актуально для трехфазных двигателей. Бывает, что одна фаза отгорает или с ней происходят другие неполадки. В этом случае металлические пластины реле, к которым поступают другие две фазы начинают пропускать через себя больший ток, что приводит к перегреву и отключению. Это необходимо для защиты двух оставшихся фаз, а также двигателя. При худшем раскладе такой сценарий может привести к выходу из строя двигателя, а также подводящих проводов.

Обратите внимание! Тепловое реле не предназначено для защиты двигателя от короткого замыкания. Это связано с высокой скоростью пробоя. Пластины просто не успевают отреагировать. Для этих целей необходимо предусматривать специальные автоматические выключатели, которые также включаются в цепь питания.

Характеристики реле

При выборе ТР необходимо ориентироваться в его характеристиках. Среди заявленных могут быть:

  • номинальный ток;
  • разброс регулировки тока срабатывания;
  • напряжение сети;
  • вид и количество контактов;
  • расчетная мощность подключаемого прибора;
  • минимальный порог срабатывания;
  • класс прибора;
  • реакция на перекос фаз.

Номинальный ток ТР должен соответствовать тому, который указан на двигателе, к которому будет происходить подключение. Узнать значение для двигателя можно на шильдике, который находится на крышке или на корпусе. Напряжение сети должно строго соответствовать той, где будет применяться. Это может быть 220 или 380/400 вольт. Количество и тип контактов также имеют значение, т. к. различные контакторы имеют различное подключение. ТР должно выдерживать мощность двигателя, чтобы не происходило ложного срабатывания. Для трехфазных двигателей лучше брать ТР, которые обеспечивают дополнительную защиту при перекосе фаз.

Процесс подключения

Ниже приведена схема подключения ТР с обозначениями. На ней можно найти сокращение КК1.1. Оно обозначает контакт, который в нормальном состоянии является замкнутым. Силовые контакты, через которые ток поступает на двигатель обозначены сокращением KK1. Автоматический выключатель, который находится в ТР обозначен как QF1. При его задействовании происходит подача питания по фазам. Фаза 1 управляется отдельной клавишей, которая обозначена маркировкой SB1. Она выполняет аварийную ручную остановку в случае возникновения непредвиденной ситуации. От нее контакту уходит на клавишу, которая обеспечивает пуск и обозначена сокращением SB2. Дополнительный контакт, который отходит от клавиши пуска, находится в дежурном состоянии. Когда выполняется запуск, тогда ток от фазы через контакт поступает на магнитный пускатель через катушку, которая обозначается KM1. Происходит срабатывание пускателя. При этом те контакты, которые в нормальном положении являются разомкнутыми замыкаются и наоборот.

Когда замыкаются контакты, которые на схеме находятся под сокращением KM1, тогда происходит включение трех фаз, которые пускают ток через тепловое реле на обмотки двигателя, который включается в работу. Если сила тока будет расти, тогда из-за воздействия контактных площадок ТР под сокращением KK1 произойдет размыкание трех фаз и пускатель обесточивается, а соответственно останавливается и двигатель. Обычная остановка потребителя в принудительном режиме происходит посредством воздействия на клавишу SB1. Она разрывает первую фазу, которая прекратит подачу напряжения на пускатель и его контакты разомкнутся. Ниже на фото можно увидеть импровизированную схему подключения.

Есть еще одна возможная схема подключения этого ТР. Разница заключается в том, что контакт реле, который в нормальном состоянии является замкнутым при срабатывании разрывает не фазу, а ноль, который уходит на пускатель. Ее применяют чаще всего в силу экономичности при выполнении монтажных работ. В процессе нулевой контакт подводится к ТР, а с другого контакта монтируется перемычка на катушку, которая запускает контактор. При срабатывании защиты происходит размыкание нулевого провода, что приводит к отключению контактора и двигателя.

Реле может быть смонтировано в схему, где предусмотрено реверсивное движение двигателя. От схемы, которая была приведена выше различие заключается в том, что присутствует НЗ контакт, в реле, которое обозначено KK1.1.

Если реле срабатывает, тогда происходит разрыв нулевого провода контактами под обозначением KK1.1. Пускатель обесточивается и прекращает питания двигателя. В экстренной ситуации кнопка SB1 поможет быстро разорвать цепь питания, чтобы остановить двигатель. Видео о подключении ТР можно посмотреть ниже.

Резюме

Схемы, на которых будет изображаться принцип подключения реле к контактору, могут иметь другие буквенные или цифровые обозначения. Чаще всего их расшифровка приводится внизу, но принцип всегда остается одинаковым. Можно немного попрактиковаться, собрав всю схему с потребителем в виде лампочки или небольшого двигателя. С помощью тестовой клавиши можно будет отработать нестандартную ситуацию. Клавиши запуска и остановки позволят проверить работоспособность всей схемы. При этом стоит обязательно учитывать тип пускателя и то, в каком нормальном состоянии находятся его контакты. Если есть определенные сомнения, тогда лучше посоветоваться с электромонтажником, который имеет опыт в сборке таких схем.

Электромагнитные пускатели предназначены для управления АД и трехфазными премниками электрического тока, в том числе:

    дистанционного пуска, непосредственным подключением к сети,

    остановки и

    реверсирования трехфазных асинхронных двигателей

    при наличии тепловых реле осуществляют защиту управляемых электродвигателей от:

    перегрузок недопустимой продолжительности

    и от токов, возникающих при обрыве одной из фаз.

Магнитный пускатель - это модифицированный контактор.

В отличие от контактора, магнитный пускатель комплектуется дополнительным оборудованием:

    тепловым реле,

    дополнительной контактной группой или

    автоматом для пуска электродвигателя

    плавкими предохранителями

    Помимо простого включения, в случае управления электродвигателем пускатель может выполнять функцию:

    переключения направления вращения его ротора (т. н. реверсивная схема), путем изменения порядка следования фаз для чего в пускатель встраивается второй контактор.

    переключения обмоток трехфазного двигателя со «звезды» на «треугольник» производится для уменьшения пускового тока двигателя.

Реверсивный магнитный пускатель представляет собой два трёхполюсных контактора, укреплённых на общем основании и сблокированных механической или электрической блокировкой, исключающей возможность одновременного включения контакторов.

Исполнение магнитных пускателей может быть открытым и защищенным (в корпусе); реверсивным и нереверсивным; с встроенной тепловой защитой электродвигателя от перегрузки и без нее.

Магнитные пускатели выбирают по следующим характеристикам:

    номинальное напряжение силовых контактов Uн. ≥ U;

    номинальное напряжение и ток катушки Uн.к = U ц.упр; Iн.авт ≥ IР;

    габарит Рп ≥ Р н.дв или Iн.м.п ≥ I н.дв;

    возможность реверсирования;

    наличие тепловых реле;

    условия окружающей среды;

    по количество блок-контактов.

Пример выбора магнитные пускатели и тепловые реле для управления и защиты электродвигателей «Потребителя 1».

Принимая во внимание, что U = 380 В, Рн = 7.5 кВт, Iн = 15,14 А, выбираем магнитный пускатель типа ПМЛ-222002 (второго габарита нереверсивный, с тепловым реле, степень защиты IP54 c кнопками «Пуск» и «Стоп»).

Номинальный ток магнитного пускателя, равный 25 А, больше номинального тока двигателя 15.14 А, что выполняет условия I н.м.п = >I н.

Выбор электротеплового реле и плавкой вставки на линию от РП1 до СУ1:

    IР – рабочий ток в линии = 15,14 А.

    КС.О, - коэффициент кратности срабатывания отсечки = 7.

    Пусковой ток I пуск = 15,14*7 =105,98 А

    Длительно допустимый ток Iдд = 28 А.

Исходя из номинального тока, выбираем тепловое реле РТЛ-1021 с возможностью регулирования диапазона тока несрабатывания в интервале от 13А до 19А.

2.3. Выбор плавкого предохранителя

Плавкие предохранители предназначены для защиты электрических сетей и приемников электроэнергии от токов короткого замыкания. Описание типов и примеры конструкции предохранителей с плавкими вставками приводятся в специальной литературе .

Пример выбора плавкой вставки для СУ1.

Расчетный ток плавкой вставки I р.пл. = I пуск / = 105,98 /2,5 = 42,4 А.

Коэффициент  = 2,5 при нечастых и легких пусках и  = 1,6 − 2 − при особо тяжелых условиях пуска.

Определяющим для выбора типа патрона и номинала калибровочной части плавкого предохранителя, исходя из условия I н.пл.  I р.пл., будет расчетный ток плавкой вставки I р.пл. = 42,4 А

Выбираем плавкую вставку предохранителя на ближайшее большое стандартное значение Iн.пл. = 45 А. Тип патрона предохранителя допускающего применение такой плавкой вставки НПН-60м. Для него Uн.п= 600 В, Iн.пp.= 60 А.

<=60/28=2,14<=3

Плавкая вставка защищает от токов короткого замыкания выполняя условие: Iпв/Iдд<=60/28=2,14<=3

Условие селективности требует, чтобы номинальный ток плавкой вставки каждого последующего предохранителя (от потребителя к источнику питания) был на одну-две ступени больше Iпл.вст. предыдущего предохранителя.

Сводная таблица 8 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 7,5 кВт

Iпик =105,98

Iном = 15,14

Наименование: 4А132S4У3

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя =

от 13А до 19А

Iном.расц = 131,25

КПД = 87,5 %

Icp = 35,75 (Kc.п. =1,35)

Iотс =175 (Кс.о. =7)

Сводная таблица 9 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 4 кВт

Наименование: 4А100L4У3

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя = от 7 А до 10 А

Iном.расц = 791

Icp = 135 (Kc.п. =1,5)

Iотс =100 (Кс.о. =10)

Сводная таблица 10 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 18,5 кВт

Iном = 35,49

Наименование:

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя =

от 30 А до 41 А

Iном.расц = 791

Icp = 135 (Kc.п. =1,5)

Iотс =100 (Кс.о. =10)

Сводная таблица11 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 22 кВт

Iном = 41,27

Наименование: 4А180S4У3

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя = от 38 А до 52 А

Iном.расц = 791

Icp = 135 (Kc.п. =1,5)

Iотс =100 (Кс.о. =10)

Сводная таблица12 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 2,2 кВт

Наименование:

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя = от 3,8 А до 6 А

Iном.расц = 791

Icp = 135 (Kc.п. =1,5)

Iотс =100 (Кс.о. =10)

Сводная таблица13 результатов согласования параметров настройки аппаратуры защиты.

Двигатель

Авт. Выключатель

Магнитный пускатель

Тепловое реле

Мощность: 11кВт

K=Iпус/In=7,5

Iпик =164,63

Iном = 21,94

Наименование: 4А132М4У3

Наименование:

Наименование:

Наименование:

N = 1500 об/мин.

Ток нагревателя = от 18А до 25А

Iном.расц = 206,25

КПД = 87,5 %

Icp =33,75 (Kc.п. =1,35)

Iотс =250 (Кс.о. =10)

Библиографический список.

Алиев И.И. Электрические аппараты: справочник/ И.И. Алиев, М.Б. Абрамов. − М.: РадиоСофт, 2004 − 256 с.:ил

    Алиев И.И. Кабельные изделия: справочник/ И.И. Алиев, С.Б. Казанский. − М.: РадиоСофт, 2002. − 224с.:ил.

    Беляев А.В. Выбор аппаратуры защит и кабелей в сетях 0,4 кВ/ А.В. Беляев. – Л.: Энергоатомиздат, 1998. – 176 с.: ил.

    ГОСТ 21.614-88 (СТ СЭВ 3217-81). − М.: Издательство стандартов, 1988

    Плаксин Е.Б. Справочное пособие по электрооборудованию. Часть I/ Е.Б. Плаксин, Ю.П. Приваленков. − Кострома: Изд-во КГТУ, 1999.

    Плаксин Е.Б. Справочное пособие по электрооборудованию. ЧастьII/ Е.Б. Плаксин, Ю.П. Приваленков. − Кострома: Изд-во КГТУ, 1999.

    Плаксин Е.Б. Электрооборудование: справочные и методические материалы/ Е.Б. Плаксин, Ю.П. Приваленков, А.Е. Виноградова: под. ред. Е.Б. Плаксина − Кострома: Изд-во КГТУ, 2008.

    Правила устройства электроустановок / Минэнерго СССР. – 6-е изд., перераб. и доп. – М.: Энергоатомиздат, 1986. – 648 с. : ил.

    Шеховцев В.П. Справочное пособие по электрооборудованию и электроснабжению/ В.П Шеховцев. – М.: ФОРУМ: ИНФА- М, 2006. – 136 с.

Магнитные пускатели предназначены, главным образом, для дистанционного управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором, а именно:

  • для пуска непосредственным подключением к сети и остановки (отключения) электродвигателя (нереверсивные пускатели),
  • для пуска, остановки и реверса электродвигателя (реверсивные пускатели).

Кроме этого, пускатели в исполнении с тепловым реле осуществляют также защиту управляемых электродвигателей от перегрузок недопустимой продолжительности.

Магнитные пускатели открытого исполнения предназначены для установки на панелях, в закрытых шкафах и других местах, защищенных от попадания пыли и посторонних предметов.

Магнитные пускатели защищенного исполнения предназначены для для установки внутри помещений, в которых окружающая среда не содержит значительного количества пыли.

Магнитные пускатели пылебрызгонепроницаемого исполнения предназначены как для внутренних, так и для наружных установок в местах, защищенных от солнечных лучей и от дождя (под навесом).

Магнитный пускатель серии ПМЛ

Устройство магнитного пускателя

Магнитные пускатели имеют магнитную систему , состоящую из якоря и сердечника и заключенную в пластмассовый корпус. На сердечнике помещена втягивающая катушка . По направляющим верхней части пускателя скользит траверса, на которой собраны якорь магнитной системы и мостики главных и блокировочных контактов с пружинами .

Принцип работы пускателя прост : при подаче напряжения на катушку якорь притягивается к сердечнику, нормально-открытые контакты замыкаются, нормально-закрытые размыкаются. При отключении пускателя происходит обратная картина: под действием возвратных пружин подвижные части возвращаются в исходное положение, при этом главные контакты и нормально-открытые блокконтакты размыкаются, нормально-закрытые блокконтакты замыкаются.

Реверсивные магнитные пускатели представляют собой два обычных пускателя, укрепленных на общей основании (панели) и имеющем электрические соединения, обеспечивающие электрическую блокировку через нормально-замкнутые блокировочные контакты обоих пускателей, которая предотвращает включение одного магнитного пускателя при включенном другом.

Самые распространенные схемы включения нереверсивного и реверсивного магнитного пускателя смотрите здесь: . В этих схемах предусмотрена нулевая защита с помощью нормально-открытого контакта пускателя, предотвращающая самопроизвольное включение пускателя при внезапном появлении напряжения.

Реверсивные пускатели могут также иметь механическую блокировку , которая располагается под основание (панелью) пускателя и также служит для предотвращения одновременного включения двух магнитных пускателей. При электрической блокировке через нормально-замкнутые контакты самого пускателя (что предусмотрено его внутренними соединениями) реверсивные пускатели надежно работают и без механической блокировки.

Реверсивный магнитный пускатель

Реверс электродвигателя при помощи реверсивного пускателя осуществляется через предварительную остановку, т.е. по схеме: отключение вращающегося двигателя - полная остановка - включение на обратное вращения. В этом случает пускатель может управлять электродвигателем соответствующей мощности.

В случае применения реверсирования или торможения электродвигателя противовключением его мощность должна быть выбрана ниже в 1,5 - 2 раза максимальной коммутационной мощности пускателя, что определяется состоянием контактов, т.е. их износоустойчивостью, при работе в применяемом режиме. В этом режиме пускатель должен работать без механической блокировки. При этом электрическая блокировка через нормально-замкнутые контакты магнитного пускателя обязательна.

Магнитные пускатели защищенного и пылебрызгонепроницаемого исполнений имеют оболочку. Оболочка пускателя пылебрызгонепроницаемого исполнения имеет специальные резиновые уплотнения для предотвращения попадания внутрь пускателя пыли и водяных брызг. Входные отверстия в оболочку закрыты специальными пробами с применением уплотнений.

Тепловые реле

Ряд магнитных пускателей комплектуется тепловыми реле , которые осуществляют тепловую защиту электродвигателя о перегрузок недопустимой продолжительности. Регулировка тока уставки реле - плавная и производится регулятором уставки путем поворота его отверткой. Здесь смотрите про . В случае невозможности осуществления тепловой защиты в повторно-краковременном режиме работы следует применять магнитные пускатели без теплового реле. От коротких замыканий тепловые реле не защищают

Тепловые реле

Схема прямого пуска и защиты асинхронного двигателя с короткозамкнутым ротором (а), (б) – пусковая характеристика двигателя (1) и защитная характеристика теплового реле (2)

Монтаж магнитных пускателей

Для надежной работы монтаж магнитных пускателей должен производится на ровной, жестко укрепленной вертикальной поверхности. Пускатели с тепловым реле рекомендуется устанавливать при наименьшей разности температуры воздуха, окружающего пускатель и электродвигатель.

Что бы не допустить ложных срабатываний не рекомендуется устанавливать пускатели с тепловым реле в местах подверженных ударам, резким толчкам и сильной тряске (например, на общей панели с электромагнитными аппаратами на номинальные токи более 150 А), так как при включении они создают большие удары и сотрясения.

Для уменьшения влияния на работу теплового реле дополнительного нагрева от посторонних источников тепла и соблюдении требования о недопустимости температуры окружающего пускатель воздуха более 40 о рекомендуется не размещать рядом с магнитными пускателями аппараты теплового действия ( и т.д.) и не устанавливать их с тепловым реле в верхних, наиболее нагреваемых частях шкафов.

При присоединении к контактному зажиму магнитного пускателя одного проводника его конец должен быть загнут в кольцеобразную или П-образную форму (для предотвращения перекоса пружинных шайб этого зажима). При присоединении к зажиму двух проводников примерно равного сечения их концы должны быть прямыми и распологаться по обе стороны от зажимного винта.

Присоединяемые концы медных проводников должны быть залужены. Концы многожильных проводников перед лужением должны быть скручены. В случае присоединения алюминиевых проводов их концы должны быть зачищены мелким надфилем под слоем смазки ЦИАТИМ или технического вазелина и дополнительно покрыты после зачистки кварцевазилиновой или цинко-вазелиновой пастой. Контакты и подвижные части магнитного пускателя смазывать нельзя.

Перед пуском магнитного пускателя необходимо произвести его наружный осмотр и убедится в исправности всех его частей, а также в свободном передвижении всех подвижных частей (от руки), сверить номинальное напряжение катушки пускателя с напряжением, подаваемым на катушку, убедится, что все электрические соединения выполнены по схеме.

При использовании пускателей в реверсивных режимах, нажав от руки подвижную траверсу до момента соприкосновения (начало замыкания) главных контактов, проверить наличие раствора нормально-замкнутых контактов, что необходимо для надежной работы электрической блокировки.

У включенного магнитного пускателя допускается небольшое гудение электромагнита , характерное для шихтованных магнитных систем .

Уход за магнитными пускателями в процессе эксплуатации

Уход за пускателями должен заключаться, прежде всего, в защите пускателя и теплового реле от пыли, грязи и влаги . Необходимо следить, чтобы винты контактных зажимов были плотно затянуты. Надо также проверять состояние контактов.

Контакты современных магнитных пускателей особого ухода не требуют. Срок износа контактов зависит от условий и режима работы пускателя. Зачистка контактов пускателей не рекомендуется, так как удаление контактного материала при зачистке приводит к уменьшению срока службы контактов. Только в отдельных случаях сильного оплавления контактов при отключении аварийного режима электродвигателя допускается их зачистка мелким надфилем.

При появлении после длительной эксплуатации магнитного пускателя гудения, носящего, характер дребезжания, необходимо чистой ветошью очистить от грязи рабочие поверхности электромагнита, проверить наличие воздушного зазора, а также проверить отсутствие заеданий подвижных частей и трещин на короткозамкнутых витках, расположенных на сердечнике.

При разборке и последующей сборке магнитного пускателя следует сохранять взаимное расположение якоря и сердечника, бывшее до разборки, так как их приработавшиеся поверхности способствуют устранению гудения. При разборках магнитных пускателей необходимо чистой и сухой ветошью протирать пыль с внутренних и наружных поверхностей пластмассовых деталей пускателя.


Подключения магнитного пускателя и малогабаритных его вариантов, для опытных электриков не представляет никакой сложности, но для новичков может оказаться задачей над которой пройдется задуматься.

Магнитный пускатель является коммутационным устройством для дистанционного управления нагрузкой большой мощности.
На практике, зачастую, основным применением контакторов и магнитных пускателей есть запуск и остановка асинхронных электродвигателей, их управления и реверс оборотов двигателя.

Но свое использование такие устройства находят в работе и с другими нагрузками, например компрессорами, насосами, устройствами обогрева и освещения.

При особых требованиях безопасности (повышенная влажность в помещении) возможно использования пускателя с катушкой на 24 (12) вольт. А напряжение питания электрооборудования при этом может быть большим, например 380вольт и большим током.

Кроме непосредственной задачи, коммутации и управления нагрузкой с большим током, еще одной немаловажной особенностью есть возможность автоматического "отключения" оборудования при "пропадание" электричества.
Наглядный пример. При работе какого то станка, например распиловочного, пропало напряжение в сети. Двигатель остановился. Рабочий полез к рабочей части станка, и тут напряжение опять появилось. Если бы станок управлялся просто рубильником, двигатель сразу бы включился, в результате — травма. При управлении электродвигателем станка с помощью магнитного пускателя, станок не включится, пока не будет нажата кнопка "Пуск" .

Схемы подключения магнитного пускателя

Стандартная схема. Применяется в случаях когда нужно осуществлять обычный пуск электродвигателя. Кнопку «Пуск» нажали – двигатель включился, кнопку «Стоп» нажали – двигатель отключился. Вместо двигателя может быть любая нагрузка подключенная к контактам, например мощный обогреватель.

В данной схеме силовая часть питается от трехфазного переменного напряжения 380В с фазами «А» «В» «С». В случаях однофазного напряжения, задействуются лишь две клеммы.

В силовую часть входит: трех полюсный автоматический выключатель QF1, три пары силовых контактов магнитного пускателя 1L1-2T1, 3L2-4T2, 5L3-6T3 и трехфазный асинхронный электродвигатель М.

Цепь управления получает питание от фазы «А».
В схему цепи управления входят кнопка SB1 «Стоп», кнопка SB2 «Пуск», катушка магнитного пускателя КМ1 и его вспомогательный контакт 13НО-14НО, подключенный параллельно кнопке «Пуск».

При включении автомата QF1 фазы «А», «В», «С» поступают на верхние контакты магнитного пускателя 1L1, 3L2, 5L3 и там дежурят. Фаза «А», питающая цепи управления, через кнопку «Стоп» приходит на "3" контакт кнопки «Пуск», вспомогательный контакт пускателя 13НО и так же остается дежурить на этих двух контактах.

Обратите внимание . В зависимости от номинала напряжения самой катушки и используемого напряжения питающей сети, будет разная схема подключения катушки.
Например если катушка магнитного пускателя на 220 вольт - один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.

Если номинал катушки на 380 вольт - один вывод к одной из фаз, а второй, через цепь кнопок к другой фазе.
Существуют также катушки на 12, 24, 36, 42, 110 вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение.

При нажатии на кнопку «Пуск» фаза «А» попадает на катушку пускателя КМ1, пускатель срабатывает и все его контакты замыкаются. Напряжение появляется на нижних силовых контактах 2Т1, 4Т2, 6Т3 и уже от них поступает на электродвигатель. Двигатель начинает вращаться.

Вы можете отпустить кнопку «Пуск» и двигатель не отключится, так как с использованием вспомогательного контакта пускателя 13НО-14НО, подключенного параллельно кнопке «Пуск», реализован самоподхват.

Получается так, что после отпускания кнопки «Пуск» фаза продолжает поступать на катушку магнитного пускателя, но уже через свою пару 13НО-14НО.

В случае если не будет самоподхвата, будет необходимо все время держать нажатой кнопку «Пуск» чтобы работал электродвигатель или другая нагрузка.


Для отключения электродвигателя или другой нагрузки достаточно нажать кнопку «Стоп»: цепь разорвется и управляющее напряжение перестанет поступать на катушку пускателя, возвратная пружина вернет сердечник с силовыми контактами в исходное положение, силовые контакты разомкнутся и отключат электродвигатель от напряжения сети.


Как выглядит монтажная (практическая) схема подключения магнитного пускателя?

Чтобы не тянуть лишний провод на кнопку «Пуск», можно поставить перемычку между выводом катушки и одним из ближайших вспомогательных контактов, в данном случае это «А2» и «14НО». А уже с противоположного вспомогательного контакта провод тянется непосредственно на "3" контакт кнопки «Пуск».

Как подключить магнитный пускатель в однофазной сети



Схема подключения электродвигателя с тепловым реле и защитным автоматом

Как выбрать автоматический выключатель (автомат) для защиты схемы?

Прежде всего выбираем сколько "полюсов", в трехфазной схеме питания естественно нужен будет трехполюсный автомат, а в сети 220 вольт как правило, двохполюсный автомат, хотя будет достаточно и однополюсного.

Следующим важным параметром будет ток сработки.

Например если электродвигатель на 1,5 кВт. то его максимальный рабочий ток — 3А (реальный рабочий может быть меньше, надо измерять). Значит, трехполюсный автомат надо ставить на 3 или 4А.

Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный (бытовой) автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

Характеристику теплового расцепителя нужно выбирать D, чтобы при пуске автомат не срабатывал.

Или же, если такой автомат не просто найти, можно по подбирать ток автомата, чтобы он был на 10-20% больше рабочего тока электродвигателя.

Можно и удаться в практический эксперимент и с помощью измерительных клещей замерить пусковой и рабочий ток конкретного двигателя.

Например для двигателя на 4кВт, можно ставить автомат на 10А.

Для защиты от перегрузки двигателя, когда ток возрастает выше установленного (например пропадания фазы) — контакты теплового реле RT1 размыкаются, и цепь питания катушки электромагнитного пускателя разрывается.

В данном случае, тепловое реле выполняет роль кнопки «Стоп», и стоит в той же цепи, последовательно. Где его поставить — не особо важно, можно на участке схемы L1 — 1, если это удобно в монтаже.

С использованием теплового расцепителя, отпадает надобность так тщательно подбирать ток вводного автомата, так как с тепловой защитой вполне должно справится тепловое реле двигателя.

Подключение электродвигателя через реверсивный пускатель

Данная необходимость возникает, тогда когда нужно чтобы движок вращался поочередно в обоих направлениях.

Смена направления вращения реализуется простим способом, меняются местами любые две фазы.

Магнитные пускатели предназначены для дистанционного управления электродвигателями и другими электроустановками. Они обеспечивают нулевую защиту, т.е. при исчезновении напряжения или его снижении до 50-60% от номинального катушка не удерживает магнитную систему пускателя, и силовые контакты размыкаются. При восстановлении напряжения токоприемник остается отключенным. Это исключает возможность аварий, связанных с самопроизвольным пуском электродвигателя или другой электроустановки. Пускатели с тепловыми реле осуществляют также защиту электроустановки от длительных перегрузок.


Наибольшее распространение получили магнитные пускатели серий ПМЕ и ПАЕ. Пускатели серии ПМЕ могут быть использованы для управления электродвигателями мощностью от 0,27 до 10 кВт, а пускатели серии ПАЕ - для управления электродвигателями и другими электроустановками мощностью от 4 до 75 кВт.


Изготавливаются эти серии в открытом, защищенном, пылеводозащищенном и пылебрызгонепроницаемом исполнении на напряжение 220 и 380 В. Они могут быть реверсивными и нереверсивными. Реверсивные пускатели наряду с пуском, остановом и защитой электродвигателя изменяют направление его вращения.


В магнитные пускатели встраиваются тепловые реле ТРН (двухполюсные) и ТРП (однополюсные). Они срабатывают под влиянием протекающего по ним тока перегрузки электродвигателя и отключают его от сети.


В каждый пускатель серии ПМЕ встраивается по одному двухфазному реле типа ТРН. В магнитный пускатель ПАЕ (нереверсивный и реверсивный) третьей величины встраивается по одному двухфазному реле ТРН, а в пускатели 4, 5 и 6 величин - по два тепловых реле типа ТРП. Катушка пускателя обеспечивает надежную работу при напряжении от 85 до 105% номинального.


Маркировка магнитных пускателей расшифровывается следующим образом: первая цифра после сочетания букв, указывающих тип пускателя, обозначает величину (1; 2; 3; 4; 5; 6), вторая - исполнение по роду защиты от окружающей среды (1 - открытое исполнение; 2 - защищенное; 3 - пылезащищенное; 4 - пылебрызгонепроницаемое), третья - исполнение (1 - нереверсивный без тепловой защиты; 2 - нереверсивный с тепловой защитой; 3 - реверсивный без тепловой защиты; 4 - реверсивный с тепловой защитой).

1. Устройство магнитного пускателя

Основными элементами магнитного пускателя (рис. 1) являются электромагнитная система 5 и 6, главные контакты 2 и 3, блок-контакты и дугогасительная камера 8. Электромагнитная система представляет собой разъемный магнитопровод, на среднем керне которого размещена катушка. Для уменьшения нагрева, вызываемого вихревыми токами, магнитопровод набран из отдельных, изолированных друг от друга пластин электротехнической стали. Неподвижную часть магнитопровода 5 называют сердечником, подвижную часть 6 - якорем. Якорь механически соединен с контактами 2.



Рис. 1. : 1 - основание; 2 - подвижный контактный мост; 3 - неподвижный контакт; 4 - присоединительный зажим; 5 - сердечник; 6 - якорь; 7 - возвратная пружина; 8 - дугогасительная камера


При включении электрический ток проходит по катушке, создает магнитное поле, которое притягивает якорь к сердечнику 5 и тем самым замыкает контакты 2 и 3 пускателя; при отключении якорь под действием возвратных пружин 7 (а в некоторых типах магнитных пускателей под действием собственного веса) отходит от сердечника и контакты размыкаются.


Катушка магнитного пускателя питается однофазным переменным током. Вследствие этого магнитный поток в течение периода дважды изменяет свое направление, достигая максимального значения и снижаясь до нуля. Это вызывает вибрацию и гудение магнитной системы. Для ослабления этих явлений на торцевой части сердечника магнитного пускателя закладывается медный короткозамкнутый виток, который охватывает обычно около 1/3 площади его сечения.

2. Тепловое реле

Тепловое реле в магнитных пускателях устанавливают для защиты электродвигателя от перегрузок.


Тепловое реле (рис. 2) состоит из четырех основных элементов: нагревателя 1, включаемого последовательно в защищаемую от перегрузки цепь; биметаллической пластинки 2 из двух спрессованных металлических пластинок с различными коэффициентами линейного расширения; системы 3-7 рычагов и пружин; контактов 8 и 9.



Рис. 2.14. : 1 - нагреватель; 2 - биметаллическая пластинка; 3 - регулировочный винт; 4 - защелка; 5 - рычаг; 6 - пружина; 7 - кнопка возврата; 8 - подвижный контакт; 9 - неподвижный контакт; 10 - вывод нагревателя


Когда через нагревательный элемент 1 проходит ток, превышающий номинальный ток электродвигателя, выделяется такое количество тепла, что незакрепленный (на рисунке левый) конец биметаллической пластинки 2 изгибается в сторону металла с меньшим коэффициентом линейного расширения (то есть опускается), нажимает на регулировочный винт 3 и выводит защелку 4 из зацепления. В этот момент под действием пружины 6 верхний конец рычага 5 поднимется, разомкнет контакты 8 и 9 и разорвет цепь управления магнитного пускателя. Кнопка 7 служит для ручного возврата рычага 5 в исходное положение после срабатывания реле.


Из вышесказанного следует, что работа теплового реле основана на изгибании биметаллической пластинки под действием тепла выделяемого в нагревательном элементе. Но эта же пластинка будет изгибаться и под действием тепла окружающего воздуха. Таким образом, в жаркие дни реле будет срабатывать быстрее, чем в холодные. Для устранения этого явления в реле применена температурная компенсация, сущность которой заключается в том, что изгибанию биметаллической пластинки от изменения температуры окружающего воздуха соответствует противоположное по направлению изгибание пластинки компенсатора. Пластинка компенсатора тоже представляет собой биметаллическую пластинку, но с обратным по отношению к основной биметаллической пластинке прогибом.


В магнитные пускатели типа ПМЕ-100, ПМЕ-200 и в магнитные пускатели ПАЕ-300 встраивают тепловые реле ТРН (рис. 3). Эти реле двухфазные, с температурной компенсацией, с ручным возвратом. Нагрев биметалла косвенный, нагреватели сменные с номинальным током до 40 А.


Температурный компенсатор выполнен из биметалла с обратным прогибом по отношению к основному термоэлементу. При установившейся температуре между компенсатором и защелкой устанавливается определенный зазор. Изменение величины этого зазора путем поворота эксцентрика (регулятора уставки), т.е. удаление или приближение защелки, изменяет уставку реле. Каждое деление регулятора уставки соответствует 5% величины номинального тока нагревателя. При уставке регулятора в положение «0» ток уставки реле равен номинальному току нагревателя. При уставке регулятора в положение «–5» ток уставки уменьшается на 25%, в положение «+5» - увеличивается на 25% по отношению к величине номинального тока нагревателя.


Время срабатывания реле при температуре окружающего воздуха 20±5°С и нагреве реле из холодного состояния шестикратным номинальным током уставки при любом положении регулятора уставки должно быть в следующих пределах:



Рис. 3. : 1, 2, 3, 4, 6 - винты; 5 - крышка; 7 - нагревательный элемент; 8 - пластмассовая крышка; 9 - шток; 10 - контактный мостик


· 3-15 с - для реле ТРН-10А;


· 6-25 с - для реле типов ТРН-10; ТРН-25 и ТРН-40.


Время ручного возврата реле в пределах температуры окружающего воздуха от –40 до +60°С должно быть не более 2 мин.


При установке реле в рабочее положение при температуре окружающего воздуха 20 ±5°С и обтекании обоих полюсов номинальным током реле не должно срабатывать в установившемся тепловом состоянии и должно срабатывать в течение не более 20 мин при токе, равном 1,2 номинального тока уставки. Защитные характеристики реле приведены на рис. 4 и 5.


Однофазные тепловые реле ТРП-60 и ТРП-150 (рис. 6), встраиваемые в пускатели ПАЕ четвертой, пятой и шестой величин, имеют комбинированный нагрев биметаллической пластинки (одна часть тока проходит через нагревательный элемент, другая - через биметаллическую пластинку). При одном нагревателе, рассчитанном на ток нулевой уставки, имеется возможность регулировать ток уставки в пределах ±25%. Реле имеет шкалу, на которой нанесены по пять делений по обе стороны от нуля. Цена деления 5% для открытого исполнения и 5,5% для защищенного.


В тепловом реле ТРП предусмотрены два исполнения по возврату: ручной возврат с гарантированным отсутствием самовозврата контактной группы и самовозврат с ускорением возврата вручную.



Рис. 4. Защитные характеристики реле ТРН-10А :


Рис. 5. Защитные характеристики реле ТРН-25 и ТРН-40 : 1 - зона защитных характеристик при срабатывании реле из холодного состояния; 2 - зона защитных характеристик при срабатывании реле из горячего состояния (после прогрева)



Рис. 6. : 1 - биметаллическая пластинка; 2 - упор самовозврата; 3 - держатель подвижного контакта; 4 - пружина; 5 - подвижный контакт; 6 - неподвижный контакт; 7 - сменный нагреватель; 8 - регулятор тока уставки; 9 - кнопка ручного возврата


Реле не срабатывает при длительном обтекании током, равном току уставки; срабатывает в течение 20 мин после увеличения тока по сравнению с током уставки на 20%. Реле нормально работает при токах, не превышающих 15-кратного значения. Реле допускает нагрузку 18-кратным номинальным током теплового элемента в течение 1 с, или до срабатывания реле, если оно произойдет за время меньше 1 с.


Для защиты реле ТРП-60 и ТРП-150 от токов короткого замыкания достаточно, чтобы номинальный ток плавкой вставки предохранителя, включенного последовательно с тепловым элементом защищаемого реле, превышал номинальный ток теплового элемента не более чем в 4-5 раз.