Циклическая частота вращения. Колебания. Гармонические колебания. Характеристика колебаний: амплитуда, период, частота.циклическая частота, фаза. Что называют частотой колебаний

ЧАСТОТА КОЛЕБАНИЙ, числоколебаний в 1 с. Обозначается. Если T -периодот колебаний, то= 1/T; измеряется в герцах (Гц).Угловая частотаколебаний= 2= 2/T рад/с.

ПЕРИОД колебаний, наименьший промежуток времени, через который совершающая колебания системавозвращается в то же состояние, в котором она находилась в начальный момент, выбранный произвольно. Период -величина, обратная частоте колебаний.Понятие"период" применимо, например, в случае гармонических колебаний, однако часто применяется и для слабо затухающих колебаний.

Круговая или циклическая частотаω

При изменении аргумента косинуса, либо синуса на 2π эти функции возвращаются к прежнему значению. Найдем промежуток времени T, в течение которого фаза гармонической функции изменяется на 2π .

ω(t + T) + α = ωt + α + 2π, или ωT = 2π.

Время T одного полного колебания называется периодом колебания. Частотой ν называют величину, обратную периоду

Единица измерения частоты - герц (Гц), 1 Гц = 1 с -1 .

Круговая, или циклическая частоты ω в 2π раз больше частоты колебаний ν. Круговая частота - это скорость изменения фазы со временем. Действительно:

.

АМПЛИТУДА (от латинского amplitudo - величина), наибольшее отклонение от равновесного значения величины, колеблющейся по определенному, в том числе гармоническому, закону; смотри такжеГармонические колебания.

ФАЗА КОЛЕБАНИЙ аргумент функцииcos (ωt + φ), описывающей гармонический колебательный процесс (ω - круговая частота, t - время, φ - начальная фаза колебаний, т. е. фаза колебаний вначальный момент времениt = 0)

Смещение, скорость, ускорение колеблющейся системы частиц.



Энергия гармонических колебаний.

Гармонические колебания

Важным частным случаем периодических колебаний являются гармонические колебания, т.е. такие изменения физической величины, которые идут по закону

где . Из курса математики известно, что функция вида (1) меняется в пределах от А до -А, и что наименьший положительный период у нее. Поэтому гармоническое колебание вида (1) происходит с амплитудой А и периодом.

Не следует путать циклическую частоту и частоту колебаний. Между ними простая связь. Так как, а, то.

Величина называется фазой колебания. При t=0 фаза равна, потомуназывают начальной фазой.

Отметим, что при одном и том же t:

где - начальная фаза.Видно, что начальная фаза для одного и того же колебания есть величина, определенная с точнотью до. Поэтому из множества возможных значений начальной фазы выбирается обычно значение начальной фазы наименьшее по модулю или наименьшее положительное. Но делать это необязательно. Например, дано колебание, то его удобно записать в видеи работать в дальнейшем с последним видом записи этого колебания.

Можно показать, что колебания вида:

где имогут быть любого знака, с помощью простых тригонометрических преобразований всегда приводится к виду (1), причем,, ане равна, вообще говоря. Таким образом, колебания вида (2) являются гармоническими с амплитудойи циклической частотой. Не приводя общего доказательства, проиллюстрируем это на конкретном примере.

Пусть требуется показать, что колебание

будет гармоническим и найти амплитуду , циклическую частоту, периоди начальную фазу. Действительно,

-

Видим, что колебание величины S удалось записать в виде (1). При этом ,.

Попробуйте самостоятельно убедится, что

.

Естественно, что запись гармонических колебаний в форме (2) ничем не хуже записи в форме (1), и переходить в конкретной задаче от записи в данной форме к записи в другой форме обычно нет необходимости. Нужно только уметь сразу находить амплитуду, циклическую частоту и период, имея перед собой любую форму записи гармонического колебания.

Иногда полезно знать характер изменения первой и второй производных по времени от величины S, которая совершает гармонические колебания (колеблется по гармоническому закону). Если , то дифференцирование S по времени t дает,. Видно, что S" и S"" колеблются тоже по гармоническому закону с той же циклической частотой, что и величина S, и амплитудамии, соответственно. Приведем пример.

Пусть координата x тела, совершающего гармонические колебания вдоль оси x, изменяется по закону , где х в сантиметрах, время t в секундах. Требуется записать закон изменения скорости и ускорения тела и найти их максимальные значения. Для ответа на поставленный вопрос заметим, что первая производная по времени от величины х есть проекция скорости тела на ось х, а вторая производная х есть проекция ускорения на ось х:,. Продифференцировав выражение для х по времени, получим,. Максимальные значения скорости и ускорения:.

В мире, окружающем нас, есть много явлений и процессов, которые, по большому счету, незаметны не потому, что их нет, а потому, что мы их попросту не замечаем. Они присутствуют всегда и являются такой же незаметной и обязательной сущностью вещей, без которой нашу жизнь и представить трудно. Каждому, например, известно, что такое колебание: в самом общем виде - это отклонение от состояния равновесия. Ну, хорошо, отклонилась верхушка Останкинской башни на свои 5 м, а что дальше? Так и застынет? Ничего подобного, начнет возвращаться назад, проскочит состояние равновесия и будет отклоняться в другую сторону, и так вечно, пока она будет существовать. А скажите, много людей реально видели эти вполне серьезные колебания такого огромного сооружения? Все знают, колеблется, сюда-туда, сюда-туда, и днем и ночью, зимой и летом, но как-то… не заметно. Причины колебательного процесса - это другой вопрос, но его наличие - неотделимый признак всего сущего.

Колеблется все вокруг: здания, сооружения, маятники часов, листья на деревьях, струны скрипки, поверхность океана, ножки камертона… Среди колебаний различают хаотичные, которые не имеют строгой повторяемости, и циклические, у которых за временной период Т колеблющееся тело проходит полный набор своих изменений, а затем этот цикл в точности повторяется, вообще говоря, бесконечно долго. Обычно эти изменения подразумевают последовательный перебор пространственных координат, как это можно наблюдать на примере колебаний маятника или той же башни.

Количество колебаний в единицу времени называется частотой F = 1/T. Единица измерения частоты - Гц = 1/сек. Понятное дело, что циклическая частота является параметром одноименных колебаний любого вида. Тем не менее, на практике принято это понятие, с некоторыми дополнениями, относить преимущественно к колебаниям вращательного характера. Так уж сложилось в технике, что является основой большинства станков, механизмов, устройств. Для таких колебаний один цикл составляет один оборот, и тогда удобнее использовать угловые параметры перемещения. Исходя из этого, вращательное перемещение измеряют угловыми единицами, т.е. один оборот равен 2π радиан, а циклическая частота ῳ = 2π / T. Из этого выражения легко просматривается связь c частотой F: ῳ = 2πF. Это позволяет сказать, что циклическая частота - это количество колебаний (полных оборотов) за 2π секунд.

Казалось бы, не в лоб, так… Не совсем так. Множители 2π и 2πF применяются во многих уравнениях электроники, математической и теоретической физики в разделах, где колебательные процессы изучаются с использованием понятия циклическая частота. Формула резонансной частоты, например, сокращается на два сомножителя. В случае использования в расчетах единицы «об./сек» угловая, циклическая, частота ῳ численно совпадает со значением частоты F.

Колебания, как суть и форма существования материи, и ее вещественного воплощения - предметов нашего бытия, имеют большое значение в жизни человека. Знание законов колебаний позволило создать современную электронику, электротехнику, многие современные машины. К сожалению, колебания не всегда приносят положительный эффект, иногда они приносят горе и разрушения. Неучтённые колебания, причина многих аварий, вызывают материалов, а циклическая частота резонансных колебаний мостов, плотин, деталей машин приводит к их преждевременному выходу из строя. Изучение колебательных процессов, умение предсказать поведение природных и технических объектов с целью предотвратить их разрушение или выход из рабочего состояния - основная задача многих инженерных приложений, а обследование промышленных объектов и механизмов на виброустойчивость - обязательный элемент эксплуатационного обслуживания.

Колебания - повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия.

Гармоническое колебание - колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

где х - смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А - амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω - циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд - полная фаза колебаний, 0- начальная фаза колебаний.

Амплитуда - максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении.

Амплитуда и начальная фаза колебаний определяется начальными условиями движения, т.е. положением и скоростью материальной точки в момент t=0.

Обобщенное гармоническое колебание в дифференциальном виде

амплитуда звуковых волн и аудиосигналов обычно относится к амплитуде давления воздуха в волне, но иногда описывается как амплитуда смещения относительно равновесия (воздуха или диафрагмы говорящего)

Чaстота - физическая величина, характеристика периодического процесса, равная числу полных циклов процесса, совершённых за единицу времени. Частота колебаний в звуковых волнах определяется частотой колебаний источника. Колебания высокой частоты затухают быстрее низкочастотных.

Величина, обратная частоте колебаний называется периодом Т.

Период колебаний- длительность одного полного цикла колебаний.

В системе координат из точки 0 проведём вектор А̅, проекция которого на ось ОХ равна Аcosϕ. Если вектор А̅ будет равномерно вращаться с угловой скоростью ω˳ против часовой стрелки, то ϕ=ω˳t +ϕ˳, где ϕ˳ начальное значение ϕ(фазы колебаний), то амплитуда колебаний есть модуль равномерно вращающегося вектора А̅, фаза колебаний (ϕ)- угол между вектором А̅ и осью ОХ, начальная фаза(ϕ˳) -начальное значение этого угла, угловая частота колебаний(ω) – угловая скорость вращения вектора А̅..

2. Характеристики волновых процессов: фронт волны, луч, скорость волны, длина волны . Продольные и поперечные волны; примеры.

Поверхность, разделяющая в данный момент времени уже охваченную и ещё не охваченную колебаниями среду,называется фронт волны. Во всех точках такой поверхности после ухода фронта волны устанавливаются колебания,одинаковые по фазе.


Луч-это перпендикуляр к фронту волны. Акустические лучи, подобно световым, прямолинейны в однородной среде. Отражаются и преломляются на границе раздела 2-х сред.

Длина волны- расстояние между двумя ближайшими друг к другу точками, колеблющимися в одинаковых фазах, обычно длина волны обозначается греческой буквой . По аналогии с волнами, возникающими в воде от брошенного камня, длиной волны является расстояние между двумя соседними гребнями волны. Одна из основных характеристик колебаний. Измеряется в единицах расстояния (метры, сантиметры и т. п.)

  • продольные волны (волны сжатия, P-волны) - частицы среды колеблются параллельно (по) направлению распространения волны (как, например, в случае распространения звука);
  • поперечные волны (волны сдвига, S-волны) - частицы среды колеблются перпендикулярно направлению распространения волны (электромагнитные волны, волны на поверхностях разделения сред);

Угловая частота колебаний(ω) – угловая скорость вращения вектора А̅(Ѵ), смещение х колеблющейся точки – проекция вектора А̅ на ось ОХ.

Ѵ=dx/dt=-Aω˳sin(ω˳t+ϕ˳)=-Ѵmsin(ω˳t+ϕ˳),гдеVm=Аω˳ ―максимальная скорость (амплитуда скорости)

3. Свободные и вынужденные колебания. Собственная частота колебаний системы. Явление резонанса. Примеры.

Свободными (собственными) колебаниями называют такие, которые совершаются без внешних воздействий за счет первоначально полученной теплом энергии. Характерными моделями таких механических колебаний являются материальная точка на пружине (пружинный маятник) и материальная точка на нерастяжимой нити (математический маятник).

В этих примерах колебания возникают либо за счет первоначальной энергии (отклонение материальной точки от положения равновесия и движения без начальной скорости), либо за счет кинетической (телу сообщается скорость в начальном положении равновесия), либо за счет и той и другой энергии (сообщение скорости телу, отклоненному от положения равновесия).

Рассмотрим пружинный маятник. В положении равновесия упругая сила F1

уравновешивает силу тяжести mg . Если оттянуть пружину на расстояние x, то на материальную точку будет действовать большая упругая сила. Изменение значения упругой силы (F), согласно закону Гука, пропорционально изменению длины пружины или смещению x точки: F= - rx

Другой пример. Математический маятник отклонения от положения равновесия га такой небольшой угол α , чтобы можно было считать траекторию движения материальной точки прямой линией, совпадающей с осью OX. При этом выполняется приближенное равенство: α ≈sin α≈ tgα ≈x/L

Незатухающие колебания. Рассмотрим модель, в которой пренебрегают силой сопротивления.
Амплитуда и начальная фаза колебаний определяются начальными условиями движения, т.е. положением и скоростью материальной точки момент t=0.
Среди различных видов колебаний гармоническое колебание является наиболее простой формой.

Таким образом, материальная точка, подвешенная на пружине или нити, совершает гармонические колебания, если не учитывать силы сопротивления.

Период колебаний может быть найден из формулы: T=1/v=2П/ω0

Затухающие колебания. В реальном случае на колеблющееся тело действуют силы сопротивления (трения), характер движения изменяется, и колебание становится затухающим.

Применительно к одномерному движению последней формуле придадим следующий вид: Fс= - r * dx/dt

Быстрота убывания амплитуды колебаний определяется коэффициентом затухания: чем сильнее тормозящее действие среды, тем больше ß и тем быстрее уменьшается амплитуда. На практически, однако, степень затухания часто характеризуются логарифмическим декрементом затухания, понимая под эти величину, равную натуральному логарифму отношения двух последовательных амплитуд, разделенных интервалом времени, равным периоду колебаний следовательно, коэффициент затухания и логарифмический декремент затухания связаны достаточно простой зависимостью: λ=ßT

При сильном затухании из формулы видно, что период колебания является мнимой величиной. Движение в этом случае уже не будет периодическим и называется апериодическим.

Вынужденные колебания. Вынужденными колебаниями называются колебания, возникающие в системе при участии внешней силы, изменяющейся по периодическому закону.

Предположим, что на материальную точку, кроме упругой силы и силы трения, действует внешняя вынуждающая сила F=F0 cos ωt

Амплитуда вынужденного колебания прямо пропорциональна амплитуде вынуждающей силы и имеет сложную зависимость от коэффициента затухания среды и круговых частот собственного и вынужденного колебаний. Если ω0 и ß для системы заданы, то амплитуда вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной Само явление – достижение максимальной амплитуды вынужденных колебаний для заданных ω0 и ß – называют резонансом.

Резонансную круговую частоту можно найти из условия минимума знаменателя в: ωрез=√ωₒ- 2ß

Механический резонанс сожжет быть как полезным, так и вредным явлением. Вредное действие связано главным образом с разрушение, которое он может вызывать. Так, в технике, учитывая разные вибрации, необходимо предусматривать возможное возникновение резонансных условий, в противном случае могут быть разрушения и катастрофы. Тела обычно имеют несколько собственных частот колебаний и соответственно несколько резонансных частот.

Резонансные явления при действии внешних механических колебаний происходят во внутренних органах. В этом, видимо, одна из причин отрицательного воздействия инфразвуковых колебаний и вибраций на организм человека.

6.Звуковые методы исследования в медицине: перкуссия, аускультация. Фонокардиография.

Звук может быть источником информации о состоянии внутренних органов человека, поэтому в медицине хорошо распространены такие методы изучения состояния пациента, как аускультация, перкуссия и фонокардиография

Аускультация

Для аускультация используют стетоскоп или фонендоскоп. Фонендоскоп состоит из полой капсулы с передающей звук мембраной, прикладываемой к телу больного, от нее идут резиновые трубки к уху врача. В капсуле возникает резонанс столба воздуха, вследствие чего усиливается звучание и улучшается аускультация. При аускультации легких выслушивают дыхательные шумы, разные хрипы, характерные для заболеваний. Также можно прослушивать сердце, кишечник и желудок.

Перкуссия

В этом методе выслушивают звучание отдельных частей тела при простукивании их. Представим замкнутую полость внутри какого-нибудь тела, заполненную воздухом. Если вызвать в этом теле звуковые колебания, то при определенной частоте звука воздух в полости начнет резонировать, выделяя и усиливая тон,соответствующий размеру и положению полости. Тело человека можно представить как совокупность газонаполненных(легкие) , жидких(внутренние органы) и твердых(кости) объемов. При ударе по поверхности тела возникают колебания, частоты которых имеют широкий диапазон. Из этого диапазона одни колебания погаснут довольно быстро, другие же, совпадающие с собственными колебаниями пустот, усилятся и вследствие резонанса будут слышимы.

Фонокардиография

Применяется для диагностики состояния сердечной деятельности. Метод заключается в графической регистрации тонов и шумов сердца и их диагностической интерпретации. Фонокардиограф состоит из микрофона, усилителя, системы частотных фильтров и регистрирующего устройства.

9. Ультразвуковые методы исследования (УЗИ) в медицинской диагностике.

1) Методы диагностики и исследования

Относят локационные методы с использованием главным образом импульсивного излучения. Это эхоэнцефалография – определение опухолей и отека головного мозга. Ультразвуковая кардиография – измерение размеров сердца в динамике; в офтальмологии – ультразвуковая локация для определения размеров глазных сред.

2)Методы воздействия

Ультразвуковая физиотерапия – механическое и тепловое воздействие на ткань.

11. Ударная волна. Получение и использование ударных волн в медицине.
Ударная волна – поверхность разрыва, которая движется относительно газа и при пересечении которой давление, плотность, температура и скорость испытывают скачок.
При больших возмущениях (взрыв, сверхзвуковое движение тел, мощный электрический разряд и т.п.) скорость колеблющихся частиц среды может стать сравнимой со скоростью звука, возникает ударнаяволна .

Ударная волна может обладать значительной энергией , так, при ядерном взрыве на образование ударной волны в окружающей среде затрачивается около 50% энергии взрыва. Поэтому ударная волна, достигая биологических и технических объектов, способна причинить смерть, увечья и разрушения.

В медицинской технике используются ударные волны , представляющие собой чрезвычайно короткий, мощный импульс давления с высокими амплитудами давления и малой компонентой растяжения. Они генерируются вне тела пациента и передаются вглубь тела, производя терапевтический эффект, предусмотренный специализацией модели оборудования: дробление мочевых камней, лечение болевых зон и последствий травм опорно-двигательного аппарата, стимуляцию восстановления сердечной мышцы после инфаркта миокарда, разглаживание целлюлитных образований и т. д.

6.Колебания

6.1.Основные понятия и законы

Движение называется периодическим , если

x(t) = x(t + T ) , где T

Колебание

периодическое

движение

положения равновесия. На рис.6.1 в

качестве

изображены

периодические

негармонические

колебания

положения

равновесия

x 0 = 0.

Период T – это время, за

совершается

колебание.

колебаний в единицу времени

Круговая (циклическая) частота

ω= 2 πν =

Гармоническими

называются колебания, при которых смещение

от положения равновесия в зависимости от времени

изменяется по закону синуса или косинуса

x = A sin (ω0 t + α)

где A

амплитуда колебаний (максимальное смещение точки от

положения равновесия), ω 0 - круговая частота гармонических колебаний, ω 0 t + α - фаза, α - начальная фаза (при t = 0).

Система, совершающая гармонические колебания, называется

классическим гармоническим осциллятором или колебательной

системой.

Скорость

и ускорение

гармонических колебаниях

изменяются по законам

X = A ω0 cos (ω0 t + α) ,

d 2 x

= −A ω0 sin (ω0 t + α) .

Из соотношений (6.6) и (6.4) получим

a = −ω 2 x ,

откуда следует, что при гармонических колебаниях ускорение прямо пропорционально смещению точки от положения равновесия и направлено противоположно смещению.

Из уравнений (6,6), (6,7) получим

+ ω0 x = 0 .

Уравнение (6.8) называется дифференциальным уравнением гармонических колебаний, а (6.4) является его решением. Подставив

(6.7) во второй закон Ньютона F = ma r , получим силу, под действием которой происходят гармонические колебания

Эта сила, прямо пропорциональная смещению точки от положения равновесия и направленная противоположно смещению, называется возвращающей силой, k называется коэффициентом возвращающей силы . Таким свойством обладает сила упругости . Силы другой физической природы, подчиняющиеся закону (6.11),

называются квазиупругими.

Колебания, происходящие под действием сил, обладающих

свойством

называются

собственными

(свободными

гармоническими) колебаниями.

Из соотношений (6.3),(6.10) получим круговую частоту и период

этих колебаний

T = 2 π

При гармонических колебаниях по закону (6.4) зависимости кинетической и потенциальной энергии от времени имеют вид

mA2 ω 0

cos 2 (ω t + α) ,

mA2 ω 0

sin 2 (ω t + α) .

Полная энергия в процессе гармонических колебаний сохраняется

EK + U = const .

Подставляя в (6.15) выражения (6.4) и (6.5) для x и v , получим

E = E K max = U max

mA2 ω 2

Примером классического

гармонического

осциллятора является легкая пружина, к которой

подвешен груз массой m

(рис.6.2). Коэффициент

возвращающей силы k называется коэффициентом

жесткости пружины.

Из второго закона Ньютона

для груза

на пружине

– kx получим

уравнение,

совпадающее

дифференциальным

уравнением

гармонических

колебаний (6.8) Следовательно, груз на пружине

при отсутствии сил сопротивления среды будет

совершать гармонические колебания (6.4).

Гармонические

колебания

представить в виде проекции на оси координат вектора, величина которого равна амплитуде A , вращающегося вокруг начала координат с угловой скоростью ω 0 . На этом представлении основан метод

векторных диаграмм сложения гармонических колебаний с

одинаковой частотой, происходящих по одной оси

x 1 = A 1 sin (ω t + ϕ 1 ) ,

x 2 = A 2 sin (ω t + ϕ 2 ) .

Амплитуда результирующего колебания определяется по

теореме косинусов

− 2 A A cos (ϕ −ϕ

Начальная фаза результирующего колебания ϕ

может быть

найдена из формулы

tg ϕ =

A 1 sin ϕ 1 + A 2 sin ϕ 2

A cosϕ + A cosϕ

При сложении однонаправленных колебаний с близкими

частотами ω 1 и ω 2

возникают биения , частота которых равна ω 1 − ω 2 .

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях

x = A 1 sin ((ω t + ϕ 1 ) ) , (6.20) y = A 2 sin ω t + ϕ 2

имеет вид

− 2

cos (ϕ −ϕ

) = sin 2 (ϕ

−ϕ ) .

Если начальные фазы ϕ 1 = ϕ 2 , то уравнение траектории – прямая

x , или y = −

ϕ = ϕ1 − ϕ2 = π 2 ,

разность

точка движется по эллипсу

Физический маятник – это твердое тело,

способное

совершать

колебания

закрепленной оси, проходящей через точку

совпадающую

(рис.6.3). Колебания являются гармоническими

при малых углах отклонения.

Момент силы тяжести относительно оси,

проходящей

является

возвращающим

моментом

выражается

соотношением

M = mgd sin

ϕ ≈ mgd ϕ.

Основное уравнение динамики вращательного движения имеет вид (см. формулу (4.18))

M = I ε , (6.23)

где I - момент инерции маятника относительно оси, проходящей через точку О , ε - угловое ускорение.

Из (6.23), (6.22) получим дифференциальное уравнение гармонических колебаний физического маятника

d 2 ϕ

ϕ = 0 .

Его решения ϕ = ϕ 0 sin ω 0 t ,

mgd .

Из (6.3) получим формулу периода колебаний физического маятника

T = 2 π I .

M = − c ϕ .

Коэффициент возвращающего момента зависит от материала проволоки и ее размеров

где G - модуль сдвига, характеризующий упругие свойства материала, r - радиус проволоки, L - ее длина.

Основное уравнение динамики вращательного

движения имеетr вид

Его решение имеет вид ϕ = ϕ 0 sin (ω 0 t + α ) ,

где ϕ - угловое смещение от положения равновесия, ϕ 0 – амплитуда

колебаний.

Сравнив уравнения (6.8) и (6.32), получим значения угловой частоты и периода крутильных колебаний

T = 2 π

Свободные колебания становятся затухающими из-за наличия сил сопротивления. Например, когда материальная точка колеблется в вязкой среде, при малых скоростях на нее действует сила

сопротивления

r - коэффициент

среды F сопр = − rv

= −rx ,

сопротивления среды. Поэтому из второго закона Ньютона

mx = − kx − rx

получим дифференциальное уравнение затухающих колебаний

M x + m x = 0 .

Его решение для случая, когда

имеет вид

x = A e−β t

sin(ω t + α ) ,

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.