Цифровой измеритель емкости и эпс. Приставка к мультиметру esr метр. Особенности работы прибора

То, что такой измеритель необходим радиолюбителю не только узнал от других, но и сам прочувствовал, когда взялся ремонтировать старинный усилитель - тут нужно достоверно проверить каждый электролит стоящий на плате и найти пришедший в негодность или произвести 100% их замену. Выбрал проверку. И чуть не купил через интернет разрекламированный приборчик под названием «ESR - mikro». Остановило то, что уж больно здорово хвалили - «через край». В общем, решился на самостоятельные действия. Так как на замахиваться не хотелось - выбрал самую простую, если не сказать примитивную схему, но с очень хорошим (тщательным) описанием. Вник в информацию и имея некоторую склонность к рисованию принялся разводить свой вариант печатной платы. Чтобы помещалась в корпус от толстого фломастера. Не получилось - не все детали входили в планируемый объём. Одумался, нарисовал печатку по образу и подобию авторской, протравил и собрал. Собрать получилось. Всё вышло очень продумано и аккуратно.

Вот только работать пробник не захотел, сколько с ним не бился. А мне не захотелось отступать. Для лучшего восприятия схемы перечертил её на «свой лад». И так «родная» (за две недели мытарств), стала она и более понятной визуально.

Схема ESR метра

А печатную плату доделал по-хитрому. Стала она «двухсторонней» - со второй стороны расположил детали, не уместившиеся на первой. Для простоты решения, возникшего затруднения, разместил их «навесом». Тут не до изящества - пробник нужен.

Протравил печатную плату и запаял детали. Микросхему в этот раз поставил на панельку, для подачи питания приспособил разъем, который можно надёжно укрепить на плате при помощи пайки и корпус в дальнейшем уже можно «вешать» на него. А вот подстроечный резистор, с которым пробник заработал лучше всего, нашёл у себя только такой - далеко не миниатюрный.

Обратная сторона - плод прагматичности и вершина аскетизма. Что-то сказать здесь можно только про щупы, несмотря элементарность исполнения они вполне удобны, а функциональность так вообще выше всяческих похвал - способны на контакт с электролитическим конденсатором любого размера.

Всё поместил в импровизированный корпус, место крепления - резьбовое соединение разъёма питания. На корпус, соответственно пошёл минус питания. То есть он заземлён. Какая ни есть, а защита от наводок и помех. Подстроечник не вошёл, зато всегда «под рукой», будет теперь потенциометром. Вилка от радиотрансляционного динамика, раз и навсегда, позволит избежать путаницы с гнёздами мультиметра. Питание от лабораторного БП, но при помощи персонального провода с вилкой от ёлочной гирлянды.

И оно, это чудо неказистое, взяло и заработало, причём сразу и как надо. И с регулировкой никаких проблем - соответствующий одному ому, один милливольт выставляется легко, примерно в среднем положении регулятора.

А 10 Ом соответствует 49 мВ.

Исправный конденсатор, соответствует примерно 0,1 Ом.

Неисправный конденсатор, соответствует более 10 Ом. С поставленной задачей пробник справился, неисправные электролитические конденсаторы на плате ремонтируемого устройства были найдены. Все подробности относительно этой схемы найдёте в архиве. Максимально допустимые значения ESR для новых электролитических конденсаторов указаны в таблице:

А некоторое время спустя захотелось придать приставке более презентабельный вид, однако усвоенный постулат «лучшее - враг хорошего» трогать его не позволил - сделаю другой, более изящный и совершенный. Дополнительная информация, в том числе и схема исходного прибора, имеется в приложении . Про свои хлопоты и радости поведал Babay .

Обсудить статью ПРИСТАВКА К МУЛЬТИМЕТРУ ESR МЕТР

Большое спасибо за проделанную работу. Еще один из выводов на основании прочитанного:Головка в 1 мА оказалась тупа для такого детектора. ведь именно включение последовательно с головкой резистора растягивает шкалу. Поскольку большая точность не нужна можно попробовать головку от магнитофона. (одна беда она изрядно электризуется, чуть рукавом свитера задел и стрелка сама на пол шкалы скачет) а ток полного отклонения около 240 мкА (точное название М68501)
А вообще чтоб конденсатор выбраковать разве недостаточно шкалы ом до 10-12?

Приставка к мультиметру - измеритель ESR

Идеальный конденсатор, работая на переменном токе должен обладать только реактивным (емкостным) сопротивлением. Активная составляющая должна быть близка к нулю. Реально, хороший оксидный (электролитический) конденсатор должен обладать активным сопротивлением (ESR) не более 0,5-5 Ом (зависит от емкости, номинального напряжения). Практически, в аппаратуре, проработавшей несколько лет, можно встретить, казалось бы исправный конденсатор емкостью 10 мкФ с ESR до 100 Ом и более. Такой конденсатор, несмотря на наличие емкости, - негоден, и скорее всего является причиной неисправности или некачественной работы аппарата, в котором он работает.

На рисунке 1 показана схема приставки к мультиметру для измерения ESR оксидных конденсаторов. Чтобы измерить активную составляющую сопротивления конденсатора необходимо выбрать такой режим измерения, при котором реактивная составляющая будет очень мала. Как известно, реактивное сопротивление емкости снижается с увеличением частоты. Например, на частоте 100 кГц при емкости 10 мкФ реактивная составляющая буде менее 0,2 Ом. То есть, измеряя сопротивление оксидного конденсатора емкостью более 10 мкФ по падению на нем переменного напряжения частотой 100 кГц и более, можно утверждать, что. при заданной погрешности 10-20% результат измерения можно будет принять практически только как величину активного сопротивления.
И так, схема, показанная на рисунке 1, представляет собой генератор импульсов частоты 120 кГц, выполненный на логических инверторах микросхемы D1, делитель напряжения, состоящий из сопротивлений R2,R3 и тестируемого конденсатора СХ, и измерителя переменного напряжения на СХ, состоящего из детектора VD1-VD2 и мультиметра, включенного на измерение малых постоянных напряжений.
Частота установлена цепью R1-C1. Элемент D1.3 является согласующим, а на элементах D1.4-D1.6 сделан выходной каскад.

Подстройкой сопротивления R2 выполняют юстировку прибора. Так как в популярном мультиметре М838 нет режима измерения малых переменных напряжений (а именно с этим прибором у автора работает приставка), в схеме пробника имеется детектор на германиевых диодах VD1-VD2. Мультиметр измеряет постоянное напряжение на С4.
Источником питания служит «Крона». Это такая же батарея, как та, которой питается мультиметр, но приставка должна питаться от отдельной батареи.
Монтаж деталей приставки выполнен на печатной плате, разводка и расположение деталей которой показаны на рисунке 2.
Конструктивно приставка выполнена в одном корпусе с источником питания. Для подключения к мультиметру используются Собственные щупы мультиметра. Корпусом служит обычная мыльница.
От точек Х1 и Х2 сделаны коротенькие щупы. Один из них жесткий, в виде шила, а второй гибкий длиной не более 10 см, око-неченый таким же заостренным щупом. Эти щупы можно подключать к конденсаторам, как к немонтированным, так к расположенным на плате (выпаивать их не требуется), что значительно упрощает поиск дефектного конденсатора при ремонте. Желательно подобрать к этим щупам «крокодильчики» для удобства проверки немонтированных (или демонтированных) конденсаторов.

Микросхему К561ЛН2 можно заменить аналогичной К1561ЛН2, ЭКР561ЛН2, а с изменениями в плате - К564ЛН2, CD4049.
Диоды Д9Б - любые гарманиевые, например, любые Д9, Д18, ГД507. Можно попробовать применить и кремниевые.
Выключатель S1 - микротумблер предположительно китайского производства. У него плоские выводы под печатный монтаж.
Налаживание приставки. После проверки монтажа и работоспособности подключите мультиметр. Желательно частотомером или осциллографом проверить частоту на Х1-Х2. Если она лежит в пределах 120-180 кГц, - нормально. Если нет, - подберите сопротивление R1.
Подготовьте набор постоянных резисторов сопротивлением 1 Ом, 5 Ом, 10 Ом, 15 Ом, 25 Ом, 30 Ом, 40 Ом, 60 Ом, 70 Ом и 80 Ом (или около того). Подготовьте лист бумаги. Подключите вместо испытуемого конденсатора резистор сопротивлением 1 Ом. Поверните ползунок R2 так, чтобы мультиметр показал напряжение 1 mV. На бумаге запишите «1 Ом = 1mV». Далее, подключайте другие резисторы, и, не меняя положение R2, делайте аналогичные записи (например. «60Ом = 17mV»).
Получится таблица расшифровки показаний мультиметра. Эту таблицу нужно аккуратно оформить (вручную или на компьютере) и наклеить на корпус приставки, так чтобы таблицей было удобно пользоваться. Если таблица бумажная, - наклейте на её поверхность скотч-ленты, чтобы защитить бумагу от истирания.
Теперь, проверяя конденсаторы, вы считываете показания мультиметра в милливольтах, затем по таблице примерно определяете ESR конденсатора и принимаете решение о его пригодности.
Хочу заметить, что эту приставку можно приспособить и для измерения емкости оксидных конденсаторов. Для этого нужно существенно понизить частоту мультивибратора, подключив параллельно С1 конденсатор емкостью 0,01 мкФ. Для удобства можно сделать переключатель «С / ESR». Так же потребуется сделать еще одну таблицу, - со значениями емкостей.
Желательно, для соединения с мультиметром использовать экранированный кабель, чтобы исключить влияние наводок на показания мультиметра.

Аппарат, на плате которого вы ищите неисправный конденсатор, должен быть выключен, как минимум за полчаса до начала поисков (чтобы конденсаторы, имеющиеся в его схеме, разрядились).
Приставку можно использовать не только с мультиметром, но и с любым прибором, способным измерять милливольты постоянного или переменного напряжения. Если ваш прибор способен измерять малое переменное напряжение (милливольтметр переменного тока или дорогой мультиметр) можно детектор на диодах VD1 и VD2 не делать, а измерять переменное напряжение прямо на испытуемом конденсаторе. Естественно, табличку нужно делать под конкретный прибор, с которым вы планируете работать в дальнейшем. А в случае использования прибора со стрелочным индикатором можно на его шкалу нанести дополнительную шкалу для измерения ESR.

Радиоконструктор, 2009, №01 стр. 11-12

Литература:
1 С Рычихин. Пробник оксидных конденсаторов Радио, №10, 2008, стр.14-15.


Более года использую прибор по схеме Д. Телеша из журнала "Схемотехника" №8, 2007 г., стр. 44-45.

На милливольтметре М-830В на диапазоне 200 мВ показания, без установленного конденсатора, - 165...175 мВ.
Напряжение питания 3 В (2 батарейки АА работали больше года), частота измерения от 50 до 100 кГц (установил 80 кГц подбором конденсатора С1). Практически измерял емкости от 0,5 до 10000 МкФ и ESR от 0,2 до 30 (при тарировке показания прибора в мВ оответствуют резисторам того-же номинала в Ом). Использовал для ремонта импульсных блоков питания ПК и БРЭА.

Практически готовая схема для проверки ЕПС, если собраь на КМОП, то будет работать и от 3-х вольт... .

ESR-метр

Т. е., прибор для измерения ЭПС - эквивалентного последовательного сопротивления.

Как выяснилось, работоспособность (электролитических - частности) конденсаторов, особенно тех, которые работают в силовых импульсных устройствах, влияет в значительной степени внутреннее эквивалентное последовательное сопротивление переменному току. Различные производители конденсаторов по разному относятся к значениям частоты, на которой должна определяться величина ЭПС, но частота эта не должна быть ниже 30кГц.

Величина ЭПС в какой-то степени связана с основным параметром конденсатора - емкостью, но доказано, что конденсатор может быть неисправным из-за большого собственного значения ЭПС, даже при наличии заявленной емкости.

вид снаружи

В качестве генератора использована микросхема КР1211ЕУ1 (частота при номиналах на схеме около 70кГц), трансформаторы могут быть применены фазоинверторные от БП АТ/АТХ - одинаковые параметры (коэффициенты трансформации в частности) практически от всех производителей. Внимание!!! В трансформаторе Т1 используется лишь половинка обмотки.

Головка прибора имет чувствительность 300мкА, но возможно использование других головок. Предпочтительно использование более чувствительных головок.

Шкала этого прибора растянута на треть при измерении до 1-го Ома. Десятая Ома легко отличима от 0,5 Ома. В шкалу укладываются 22 Ома.

Растяжку и диапазон можно варьировать с помощью добавления витков к измерительной обмотке (с щупами) и/или к обмоткам III того или иного трансформатора.

http://www. matei. ro/emil/links2.php

http://www. . au/cms/gallery/article. html? slideshow=0&a=103805&i=2

DIV_ADBLOCK308">


http://forum. /index. php? showtopic=42955&st=40

Измеритель ёмкости от 0,5 до 30000 мкф. Если повысить частоту генератора до 100 кгц, то можно будет измерять и ЕПС.
Пределы: 0-50, 0-500, мкф

http://*****/index. php? act=categories&CODE=article&article=2386

За основу всех измерителей брался генератор с выходной частотой 50-100 кГц и измеритель напряжения или тока, между ними включался испытуемый конденсатор и его внутреннее сопротивление определялось по показаниям стрелочного или светодиодного индикатора. Некоторые измерители, обладают достаточно высокими показателями и довольно надёжными способами защиты от попадания напряжения от заряженного проверяемого конденсатора, на вход прибора.

При подключении исправного конденсатора, светодиод должен гаснуть полностью, т. к. короткозамкнутые витки полностью срывают генерацию. При неисправных конденсаторах, светодиод продолжает гореть или чуть-чуть пригасает, в зависимости от величины ESR.

Простота данного пробника, позволяет собрать его в корпусе от обычного фломастера, основное место в нём уделяется батарее, кнопке включения и светодиоде выступающем над корпусом. Миниатюрность пробника позволяет разместить один из щупов, там же, а второй сделать максимально коротким проводом, что уменьшит влияние индуктивности щупов, на показания. К тому же не понадобится крутить головой, для визуального контроля индикатора и установки щупов, что часто неудобно в процессе работы.

Конструкция и детали.
Катушки трансформатора намотаны на одном кольце, желательно наименьшего размера, его магнитная проницаемость не очень важна, генераторные имеют число витков по 30 вит. каждая, индикаторная - 6 вит. и измерительная 4 вит. или 3 вит. (подбирается при настройке), толщина всех проводов 0,2-0,3мм. Измерительную обмотку следует мотать проводом не менее 1.0 мм. (Вполне подойдет монтажный провод – лишь бы обмотка уместилась на кольце.) R1 регулирует в небольших пределах частоту и потребляемый ток. Резистор R2 ограничивает ток короткого замыкания создаваемого проверяемым конденсатором, он, по соображения защиты от заряженного конденсатора, который разрядится через него и обмотку, должен быть 2-х ваттным. Варьируя его сопротивлением, можно легко отличить сопротивление от 0.5 Ом и выше, по свечению светодиода. Транзистор подойдёт любой маломощный. Питание осуществляется от одной батареи 1.5 вольта. В ходе испытаний прибора, его даже удавалось запитывать от двух щупов стрелочного омметра, включенного на единицы Ом.

Номиналы деталей:
Rоm
R2* - 1оm
C1- 1 мкФ
С2- 390пФ

Настройка.
Не представляет никаких трудностей. Правильно собранный генератор начинает работать сразу на частоте 50-60 кГц, если не загорится светодиод, нужно поменять полярность включения. Потом подключая к измерительной обмотке вместо конденсатора резистор 0.5-0.3 Ома добиваются еле заметного свечения, подбирая витки и резистор R2, но обычно их количество колеблется от 3-х до 4-х. В конце всего проверяют на заведомо исправном и неисправном конденсаторе. При наличии небольших навыков, легко распознаются ESR конденсатора до 0.3-0,2 Ома, что вполне достаточно для отыскания неисправного конденсатора, от ёмкости в 0,47 и до 1000мкФ. Вместо одного светодиода можно поставить два и в цепь одного из них включить стабилитрон на 2-3 вольта, но понадобится увеличить обмотку, да и конструктивно прибор усложнится. Можно сделать сразу два щупа, выходящими из корпуса, но следует предусмотреть расстояние между ними, чтоб было удобно мерить различные по величине, конденсаторы. (например - для SMD конденсаторов можно использовать идею ув. Barbos"а - и конструктивно выполнить пробник в виде пинцета)

Ещё одно применение этого прибора: им удобно проверять кнопки управления в аудио и видеоаппаратуре, т. к. со временем некоторые кнопки дают ложные команды из-за повышенного внутреннего сопротивления. Тоже касается и проверки печатных проводников на обрыв или проверки переходного сопротивления контактов.
Надеюсь, пробник займёт достойное место в строю приборов-помощников «жукостроителя».

Впечатление от использования этого пробника:
- я забыл, что такое неисправный конденсатор;
- 2/3 старых конденсаторов пришлось выкинуть.
Ну и самое приятное – в магазин и на базар без пробника я не хожу.
Продавцы конденсаторов – очень недовольны.

Измеритель емкости и индуктивности

Е. Терентьев
Радио, 4, 1995

http://www. *****/shem/schematics. html? di=54655

Предлагаемый стрелочный измеритель позволяет определять параметры большинства встречающихся в практике радиолюбителя катушек индуктивности и конденсаторов. Кроме измерений параметров элементов, прибор может быть использован как генератор фиксированных частот с декадным делением, а также как генератор меток для радиотехнических измерительных приборов.

Предлагаемый измеритель емкости и индуктивности отличается от аналогичного ("Радио", 1982, 3, стр.47) простотой и малой трудоемкостью изготовления. Диапазон измерений разбит подекадно на шесть поддиапазонов с предельными значениями емкости 100 пф - 10 мкф для конденсаторов и индуктивности 10 мкГн - 1 Гн для катушек индуктивности. Минимальные значения измеряемых емкости, индуктивности и точность измерения параметров на пределе 100 пф и 10 мкГн определяет конструктивная емкость клемм или гнезд для подключения выводов элементов. На остальных поддиапазонах погрешность измерения в основном определяется классом точности стрелочной измерительной головки. Потребляемый прибором ток не превышает 25 мА.

Принцип работы прибора основан на измерении среднего значения разрядного тока емкости конденсатора и ЭДС самоиндукции индуктивности. Измеритель, принципиальная схема которого приведена на рис.1, состоит из задающего генератора на элементах DD1.5, DD1.6 с кварцевой стабилизацией частоты, линейки делителей частоты на микросхемах DD2 - DD6 и буферных инверторов DD1.1 - DD1.4. Резистор R4 ограничивает выходной ток инверторов. Цепь из элементов VD7, VD8, R6, C4 используется при измерении емкости, а цепь VD6, R5, R6, C4 - при измерении индуктивности. Диод VD9 защищает микроамперметр PA1 от перегрузки. Емкость конденсатора C4 выбрана сравнительно большой, чтобы уменьшить дрожание стрелки на максимальном пределе измерения, где тактовая частота минимальна - 10 Гц.

В приборе использована измерительная головка с током полного отклонения 100 мкА. Если применить более чувствительную - на 50 мкА, то в этом случае можно уменьшить предел измерения в 2 раза. Семисегментный светодиодный индикатор АЛС339А используется как индикатор измеряемого параметра, его можно заменить индикатором АЛС314А. Вместо кварцевого резонатора на частоту 1 МГц можно включить слюдяной или керамический конденсатор емкостью 24 пф, однако при этом погрешность измерения увеличится на 3-4%.

Возможны замены диода Д20 диодами Д18 или ГД507, стабилитрона КС156А - стабилитронами КС147А, КС168А. Кремниевые диоды VD1-VD4, VD9 могут быть любыми с максимальным током не менее 50 мА, а транзистор VT1 - любым из типов КТ315, КТ815. Конденсатор CЗ - керамический К10-17а или КМ-5. Все номиналы элементов и частота кварца могут отличаться на 20 %.

Настройку прибора начинают в режиме измерения емкости. Переводят переключатель SB1 в верхнее по схеме положение и устанавливают переключатель диапазона SA1 в положение, соответствующее пределу измерения 1000 пФ. Подключив образцовый конденсатор емкостью 1000 пФ к клеммам XS1, XS2, движок подстроечного резистора R6 выводят в положение, при котором стрелка микроамперметра PA1 установится на конечное деление шкалы. Затем переводят переключатель SB1 в режим измерения индуктивности и, подключив к клеммам катушку индуктивности величиной 100 мкГн, в том же положении переключателя SA1 производят аналогичную калибровку подстроечным резистором R5. Естественно, точность калибровки прибора определяется точностью используемых образцовых элементов.

Измерения прибором параметров элементов желательно начинать с большего предела измерений для избежания резкого зашкаливания стрелки головки прибора. Для обеспечения питания измерителя можно использовать постоянное напряжение 10...15 В или переменное напряжение от подходящей обмотки трансформатора питания другого прибора с током нагрузки не менее 40...50 мА. Мощность отдельного трансформатора должна быть не менее 1 Вт.

В случае питания прибора от батареи аккумуляторов или гальванических элементов напряжением 9 В его можно упростить и повысить экономичность исключением диодов выпрямителя напряжения питания, индикатора HG1 и переключателя SB1, выведя на переднюю панель прибора три клеммы (гнезда) от точек 1, 2, 3, указанных на принципиальной схеме. При измерении емкости конденсатор подключают к клеммам 1 и 2, при измерении индуктивности катушку подключают к клеммам 1 и 3.

Примечание редакции. Точность измерителя LC со стрелочным индикатором в определенной степени зависит от участка шкалы, поэтому введение в схему переключаемого делителя частоты на 2, 4 или аналогичное изменение частоты задающего генератора (для варианта без кварцевого резонатора) позволяет снизить требования к габаритам и классу точности показывающего прибора.

Приставка-измеритель LC к цифровому вольтметру

http:///izmer/izmer4.php

Цифровой измерительный прибор в лаборатории радиолюбителя теперь не редкость. Однако не часто им можно измерить параметры конденсаторов и катушек индуктивности, даже если это мультиметр. Описываемая здесь простая приставка предназначена для использования совместно с мультиметрами или цифровыми вольтметрами (например, М-830В, М-832 и им подобными), не имеющими режима измерения параметров реактивных элементов.

Для измерения емкости и индуктивности с помощью несложной приставки использован принцип, подробно описанный в статье А. Степанова "Простой LC-метр" в "Радио" № 3 за 1982 г. Предлагаемый измеритель несколько упрощен (вместо генератора с кварцевым резонатором и декадного делителя частоты применен мультивибратор с переключаемой частотой генерации), но он позволяет с достаточной для практики точностью измерять емкость в пределах 2 пф...1 мкф и индуктивность 2 мкГн... 1 Гн. Кроме того, в нем вырабатывается напряжение прямоугольной формы с фиксированными частотами 1 МГц, 100 кГц, 10 кГц, 1 кГц, 100 Гц и регулируемой амплитудой от 0 до 5 В, что расширяет область применения устройства.

Задающий генератор измерителя (рис. 1) выполнен на элементах микросхемы DD1 (КМОП), частоту на его выходе изменяют с помощью переключателя SA1 в пределах 1 МГц - 100 Гц, подключая конденсаторы С1-С5. С генератора сигнал поступает на электронный ключ, собранный на транзисторе VT1. Переключателем SA2 выбирают режим измерения "L" или "С". В показанном на схеме положении переключателя приставка измеряет индуктивность. Измеряемую катушку индуктивности подключают к гнездам Х4, Х5, конденсатор - к ХЗ, Х4, а вольтметр - к гнездам Х6, Х7.


При работе вольтметр устанавливают в режим измерения постоянного напряжения с верхним пределом 1 - 2В. Следует учесть, что на выходе приставки напряжение изменяется в пределах 0... 1 В. На гнездах Х1, Х2 в режиме измерения емкости (переключатель SA2 - в положении "С") присутствует регулируемое напряжение прямоугольной формы. Его амплитуду можно плавно изменять переменным резистором R4.

Питается приставка от батареи GB1 с напряжением 9 В ("Корунд" или аналогичные ей) через стабилизатор на транзисторе VT2 и стабилитроне VD3.

Микросхему К561ЛА7 можно заменить на К561ЛЕ5 или К561ЛА9 (исключив DD1.4), транзисторы VT1 и VT2-на любые маломощные кремниевые соответствующей структуры, стабилитрон VD3 заменим на КС156А, КС168А. Диоды VD1, VD2 - любые точечные германиевые, например, Д2, Д9, Д18. Переключатели желательно использовать миниатюрные.


Корпус прибора - самодельный или готовый подходящих размеров. Монтаж деталей (рис. 2) в корпусе - навесной на переключателях, резисторе R4 и гнездах. Вариант внешнего вида показан на рисунке. Разъемы ХЗ-Х5 - самодельные, изготовлены из листовой латуни или меди толщиной 0,1...0,2 мм, конструкция их понятна из рис. 3. Для подключения конденсатора или катушки необходимо ввести выводы детали до упора в клиновидный зазор пластин; этим достигается быстрая и надежная фиксация выводов.


Налаживание прибора производят с помощью частотомера и осциллографа. Переключатель SA1 переводят в верхнее по схеме положение и подбором конденсатора С1 и резистора R1 добиваются частоты 1 МГц на выходе генератора. Затем переключатель последовательно переводят в последующие положения и подбором конденсаторов С2 - С5 устанавливают частоты генерации 100 кГц, 10 кГц, 1 кГц и 100 Гц. Далее осциллограф подключают к коллектору транзистора VT1, переключатель SA2 - в положении измерения емкости. Подбором резистора R3 добиваются формы колебаний, близкой к меандру на всех диапазонах. Затем переключатель SA1 снова устанавливают в верхнее по схеме положение, к гнездам Х6, Х7 подключают цифровой или аналоговый вольтметр, а к гнездам ХЗ, Х4 - образцовый конденсатор емкостью 100 пф. Подстройкой резистора R7 добиваются показаний вольтметра 1 В. Потом переводят переключатель SA2 в режим измерения индуктивности и к гнездам Х4, Х5 подключают образцовую катушку с индуктивностью 100 мкГн, резистором R6 устанавливают показания вольтметра, также равные 1 В.

На этом настройка прибора заканчивается. На остальных диапазонах точность показаний зависит только от точности подбора конденсаторов С2 - С5. От редакции. Налаживание генератора лучше начать с частоты 100 Гц, которую устанавливают подбором резистора R1, конденсатор С5 не подбирают. Следует помнить, что конденсаторы СЗ - С5 должны быть бумажными или, что лучше, метаплопленочными (К71, К73, К77, К78). При ограниченных возможностях в подборе конденсаторов можно использовать и переключение секцией SA1.2 резисторов R1 и их подбор, а число конденсаторов надо уменьшить до двух (С1, СЗ). Номиналы сопротивлений резисторов составят в этом: случав 4,7: 47; 470 к0м.

(Радио 12-98

Список источников по теме ЭПС конденсаторов в журнале «Радио»

Пробник оксидных конденсаторов. - Радио, 2003, №10, с.21-22. ЭПС и не только... - Радио, 2005, №8, с.39,42. Прибор для проверки оксидных конденсаторов. - Радио, 2005, №10, с.24-25. Оценка эквивалентного последовательного сопротивления конденсатора. - Радио, 2005, №12, с.25-26. Измеритель ЭПС оксидных конденсаторов. – Радио, 2006, №10, с. 30-31. Индикатор ЭПС оксидных конденсаторов. - Радио, 2008, №7, с.26-27. Измеритель ЭПС оксидных конденсаторов. - Радио, 2008, №8, с. 18-19. Пробник оксидных конденсаторов. - Радио, 2008, №10, с.14-15. Измерители ЭПС оксидных конденсаторов. - Радио, 2009, №8, с 49-52.

Измеритель ёмкости конденсаторов

В. Васильев, г. Набережные Челны

Это устройство построено на основе прибора, ранее описанного в нашем журнале . В отличие от большинства таких приборов оно интересно тем, что проверка исправности и емкости конденсаторов возможна и без их демонтажа из платы. В эксплуатации предлагаемый измеритель весьма удобен и имеет достаточную точность.

Тот, кто занимается ремонтом бытовой или промышленной радиоаппаратуры, знает, что исправность конденсаторов удобно проверять без их демонтажа. Однако многие измерители емкости конденсаторов такой возможности не предоставляют. Правда, одна подобная конструкция была описана в . Она имеет небольшой диапазон измерения, нелинейную шкалу с обратным отсчетом, что снижает точность. При проектировании же нового измерителя решалась задача создания прибора с широким диапазоном, линейной шкалой и прямым отсчетом, чтобы можно было пользоваться им, как лабораторным. Помимо этого, прибор должен быть диагностическим, т. е. способным проверять и конденсаторы, зашунтированные р-n переходами полупроводниковых приборов и сопротивлениями резисторов.

Принцип работы прибора таков. На вход дифференциатора , в котором проверяемый конденсатор используется в качестве дифференцирующего, подается напряжение треугольной формы. При этом на его выходе получается меандр с амплитудой, пропорциональной емкости этого конденсатора. Далее детектор выделяет амплитудное значение меандра и выдает постоянное напряжение на измерительную головку.

Амплитуда измерительного напряжения на щупах прибора примерно 50 мВ, что недостаточно для открывания р-n переходов полупроводниковых приборов, поэтому они не оказывают своего шунтирующего действия.

Прибор имеет два переключателя. Переключатель пределов "Шкала" с пятью положениями: 10 мкФ, 1 мкФ, 0,1 мкФ, 0,01 мкФ, 1000 пФ. Переключателем "Множитель" (Х1000, Х100, Х10, Х1) меняется частота измерения. Таким образом, прибор имеет восемь поддиапазонов измерения емкости от 10000 мкФ до 1000 пФ, что практически достаточно в большинстве случаев.

Генератор треугольных колебаний собран на ОУ микросхемы DA1.1, DA1.2, DA1.4 (рис. 1). Один из них, DA1.1, работает в режиме компаратора и формирует сигнал прямоугольной формы, который поступает на вход интегратора DA1.2. Интегратор преобразует прямоугольные колебания в треугольные. Частота генератора определяется элементами R4, С1-С4. В цепи обратной связи генератора стоит инвертор на ОУ DA1.4, который обеспечивает автоколебательный режим. Переключателем SA1 можно устанавливать одну из частот измерения (множитель): 1 Гц (Х1000), 10 Гц(х100), 100 Гц(х10), 1 кГц(х1).


Рис. 1

ОУ DA2.1 - повторитель напряжения, на его выходе сигнал треугольной формы амплитудой около 50 мВ, который и используется для создания измерительного тока через проверяемый конденсатор Сх.

Так как емкость конденсатора измеряется в плате, на нем может находиться остаточное напряжение, поэтому для исключения повреждения измерителя параллельно его щупам подключены два встречно-параллельных диода моста VD1.

ОУ DA2.2 работает как дифференциатор и выполняет роль преобразователя ток - напряжение. Его выходное напряжение: Uвых=(R12...R16) Iвх=(R12...R16)Cх dU/dt. Например, при измерении емкости 100 мкФ на частоте 100 Гц получается: Iвх=Сх dU/dt=100 100 мВ/5 мс=2мА, Uвых= R16 Iвх=1 кОм мА=2 В.

Элементы R11, С5-С9 необходимы для устойчивой работы дифференциатора. Конденсаторы устраняют колебательные процессы на фронтах меандра, которые делают невозможным точное измерение его амплитуды. В результате на выходе DA2.2 получается меандр с плавными фронтами и амплитудой, пропорциональной измеряемой емкости. Резистор R11 также ограничивает входной ток при замкнутых щупах или при пробитом конденсаторе. Для входной цепи измерителя должно выполняться неравенство: (3...5)СхR11<1/(2f).

Если это неравенство не выполнено, то за половину периода ток Iвх не достигает установившегося значения, а меандр - соответствующей амплитуды, и возникает погрешность в измерении. Например, в измерителе, описанном в , при измерении емкости 1000 мкФ на частоте 1 Гц постоянная времени определяется как Cх R25=1000 мкФ 910 Ом=0,91 с. Половина же периода колебаний Т/2 составляет лишь 0,5 с, поэтому на данной шкале измерения окажутся заметно нелинейными.

Синхронный детектор состоит из ключа на полевом транзисторе VT1, узла управления ключом на ОУ DA1.3 и накопительного конденсатора С10. ОУ DA1.2 выдает управляющий сигнал на ключ VT1 во время положительной полуволны меандра, когда его амплитуда установлена. Конденсатор С10 запоминает постоянное напряжение, выделенное детектором.

С конденсатора С10 напряжение, несущее информацию о величине емкости Сх, через повторитель DA2.3 подается на микроамперметр РА1. Конденсаторы С11, С12 - сглаживающие. С движка переменного резистора калибровки R22 снимается напряжение на цифровой вольтметр с пределом измерения 2 В.

Источник питания (рис. 2) выдает двухполярные напряжения ±9 В. Опорные напряжения образуют термостабильные стабилитроны VD5, VD6. Резисторами R25, R26 устанавливают необходимую величину выходного напряжения. Конструктивно источник питания объединен с измерительной частью прибора на общей монтажной плате.


Рис. 2

В приборе использованы переменные резисторы типа СПЗ-22 (R21, R22, R25, R26). Постоянные резисторы R12-R16 - типа С2-36 или С2-14 с допустимым отклонением ±1 %. Сопротивление R16 получено соединением последовательно нескольких подобранных резисторов. Сопротивления резисторов R12-R16 можно использовать и других типов, но их надо подобрать с помощью цифрового омметра (мультиметра). Остальные постоянные резисторы - любые с мощностью рассеяния 0,125 Вт. Конденсатор С10 - К53-1 А, конденсаторы С11-С16 - К50-16. Конденсаторы С1, С2 - К73-17 или другие металлопленочные, СЗ, С4 - КМ-5, КМ-6 или другие керамические с ТКЕ не хуже М750, их необходимо также подобрать с погрешностью не более 1 %. Остальные конденсаторы - любые.

Переключатели SA1, SA2 - П2Г-3 5П2Н. В конструкции допустимо применить транзистор КП303 (VT1) с буквенными индексами А, Б, В, Ж, И. Транзисторы VT2, VT3 стабилизаторов напряжения могут быть заменены другими маломощными кремниевыми транзисторами соответствующей структуры. Вместо ОУ К1401УД4 можно использовать К1401УД2А, но тогда на пределе "1000 пФ" возможно появление ошибки из-за смещения входа дифференциатора, создаваемого входным током DA2.2 на R16.

Трансформатор питания Т1 имеет габаритную мощность 1 Вт. Допустимо использовать трансформатор с двумя вторичными обмотками по 12 В, но тогда необходимо два выпрямительных моста.

Для настройки и отладки прибора потребуется осциллограф. Неплохо иметь частотомер для проверки частот генератора треугольных колебаний. Нужны будут и образцовые конденсаторы.

Прибор начинают настраивать с установки напряжений +9 В и -9 В с помощью резисторов R25, R26. После этого проверяют работу генератора треугольных колебаний (осциллограммы 1, 2, 3, 4 на рис. 3). При наличии частотомера измеряют частоту генератора при разных положениях переключателя SA1. Допустимо, если частоты отличаются от значений 1 Гц, 10 Гц, 100 Гц, 1 кГц, но между собой они должны отличаться точно в 10 раз, так как от этого зависит правильность показаний прибора на разных шкалах. Если частоты генератора не кратны десяти, то необходимой точности (с погрешностью 1 %) добиваются подбором конденсаторов, подключаемых параллельно конденсаторам С1-С4. Если емкости конденсаторов С1-С4 подобраны с необходимой точностью, можно обойтись без измерения частот.

Это измеритель ESR (ЭПС) + измеритель ёмкости конденсаторов.

Прибор измеряет ЭПС (эквивалентное последовательное сопротивление) конденсатора и его ёмкость измеряя время зарядки постоянным током. В роли источника тока выступает управляемый стабилитрон TL431 и p-n-p транзистор.

Ёмкость меряет в пределах 1 - 150 000мкФ, ESR - до 10 Ом.

Вся конструкция была успешно позаимствована с сайта pro-radio, где Олег Гинц (он же GO и он же автор конструкции) выложил свою работу на общее обозрение. Эта конструкция была повторена не один десяток, а то и сотню раз, опробована и одобрена народом. При правильной сборке остаётся лишь выставить поправочные коэффициенты на ёмкость и сопротивление.

Прибор собран на микроконтроллере PIC16F876A, распространённом ЖК-дисплее типа WH-1602 на базе HD44780 и рассыпухе. Контроллер можно заменить на PIC16F873 - в конце статьи есть прошивки на обе модели.

Ёмкость и ESR конденсаторов около 1000 мкф измеряет за доли секунды. Так же с большой точностью измеряет малое сопротивление. То есть можно пользоваться, когда необходимо сделать шунт для амперметра:)

Так же хорошо меряет ёмкость внутрисхемно. Только, если есть индуктивности - может врать. В этом случае выпаиваем элемент.

Корпус, Z-42, в качестве коннектора подключения щупов по четырёхпроводной схеме выбрал старый, добрый, надёжный USB 2.0 порт.

Старый, советский, подсохший электролитический конденсатор.

А это нерабочий конденсатор с цепи питания процессора на материнской плате.

Как работает.

Конденсатор предварительно разряжается, включается источник тока 10 мА, оба входа измерительного усилителя подключаются на Сх, делается задержка порядка 3.6 мкс для устранения влияния звона в проводах. Одновременно через ключи DD2.3 || DD2.4 заряжается конденсатор С1, который собственно и запоминает самое большое напряжение, которое было на Cx. Следующим шагом размыкаются ключи DD2.3 || DD2.4 и выключается источник тока. Инвертирующий вход ДУ остается подключенным к Сх, на котором после выключения тока напряжение падает на величину 10мА*ESR. Вот собственно и все - далее спокойно можно мерять напряжение на выходе ДУ - там два канала, один с КУ=330 для предела 1 Ом и КУ=33 для 10 Ом.

На форуме-источнике, где выложена печатная плата и прошивки - печатка была двухсторонняя. С одной стороны - все дорожки, с другой - сплошной слой земли и просто дырки под компоненты. У меня такого текстолита на момент сборки не было, поэтому пришлось делать землю проводами. Так или иначе, особых сложностей это не доставило и на работоспособности и точности прибора никак не отразилось.

На последней картинке - источник тока, источник отрицательного напряжения и силовой ключ.

Плата простая, настройка - ещё проще.

Первое включение - проверяем наличие +5V после 78L05 и -5V (4.7V) на выходе DA4 (ICL7660). Подбором R31 добиваемся нормальной контрастности на индикаторе.
Включение прибора при нажатой кнопке Set переводит его в режим установки корректирующих коэффициентов. Их всего три - для каналов 1 Ом, 10 Ом и для ёмкости. Изменение коэффициентов кнопками + и -, запись в EEPROM и перебор - той же кнопкой Set.
Имеется так же отладочный режим - в этом режиме на индикатор выводятся измеренные значения без обработки - для емкости - состояние таймера (примерно 15 отсчетов на 1 мкФ) и оба канала измерения ESR (1 шаг АЦП=5V/1024). Переход в отладочный режим - при нажатой кнопке "+"
И еще один момент - установка нуля. Для этого замыкаем вход, нажимаем и удерживаем кнопку "+" и с помощью R4 добиваемся минимальных показаний (но не нулевых!) одновременно по обоим каналам. Не отпуская кнопку "+", нажимаем Set - на индикатор выведется сообщение о сохранении U0 в EEPROM.
Далее измеряем образцовые сопротивления 1 Ом (или меньше), 10 Ом и емкость (которой доверяете) , определяем поправочные коэффициенты. Прибор выключаем, включаем при нажатой кнопке Set и устанавливаем к-ты соответственно результатам измерений.
Плата в три этапа, вид сверху:

Схема прибора:

Привожу небольшой список FAQ, сформировавшийся на форуме-источнике.

Q. При подключении резистора в 0,22 Ома - пишет - 1 с копейками, при подключении резистора в 2,7 Ом - пишет ESR > 12.044 Ом.

A. Отклонения могут быть, но в пределах 5-10%, а тут в 5 раз. Надо проверять аналоговую часть, виновниками могут быть в порядке убывания вероятности:

источник тока,
дифф. усилитель
ключи
Начните с источника тока. Он должен выдавать 10 (+/-0.5) мА, его проверить можно либо в динамике осциллографом, нагрузив на 10 ом - в импульсе должно быть не более 100 мВ. Если ловить иголки не хочется - проверьте в статике - уберите перемычку (нулевое сопротивление) между RC0 и R3, нижний конец R3 на землю, и включаете миллиамперметр между коллектором VT1 и землей (правда возможно будет мешать VT2 - тогда при проверке коллектор VT1 лучше отключить от схемы).

На деле решение было такое: -"Перепутал я сослепу 102 и 201 - и вместо 1 килоома забубенил 200 ом."

Q. Возможна ли замена TL082 на TL072?

A. К ОУ особых требований нет кроме полевиков на входе, с TL072 должно работать.

Q. Зачем на вашей печатке сделаны два входных разъёма: один подключен к диодам-транзисторам, а другой - к DD2?

A. Чтобы скомпенсировать падение напряжения на проводах, тестируемый элемент лучше подключать по 4-х проводной схеме, поэтому и разъем 4-х контактный, а провода объединяются вместе уже на крокодилах.

Q. На холостом ходу отрицательное напряжение -4 Вольта и сильно зависит от типа конденсатора между 2 и 4 выводами ICL 7660. С обычным электролитом всего -2 В было.

A. После замены на танталовый, выдранный с 286 материнки стало -4 В.

Q. Индикатор WH-1602 не работает или греется контроллер индикатора.

A. Неверно указана цоколевка индикатора WINSTAR WH-1602 в плане разводки питания, перепутаны 1 и 2 выводы! На alldatasheet 1602L, который совпадает с цоколевкой, указанной Winstar и на схеме. Мне же попался 1602D - вот он имеет "спутанные" 1 и 2 выводы.

Надпись Cx ---- выводится в следующих случаях:

При измерении емкости срабатывает тайм-аут, т.е. за отведенное время измерения прибор не дождался переключения обоих компараторов. Это происходит при измерении резисторов, закороченных щупах, либо когда измеряемая емкость >150000 мкФ и т.п.
Когда напряжение, измеренное на выходе DA2.2 превысит 0x300 (это показания АЦП в 16-ричном коде), процедура измерения емкости не выполняется и на индикатор также выводится Cx ----.
При разомкнутых щупах (или R>10 Ом) так и должно быть.

Знак ">" в строке ESR появляется при превышении напряжения на выходе DA2.2 0x300 (в единицах АЦП)

Подводя итог: травим плату, без ошибок паяем элементы, прошиваем контроллер - и прибор работает.

Спустя пару лет решил сделать прибор автономным. По мотивам зарядного устройства для смартфонов был сделан step-up преобразователь на 7 В выходного напряжения. Можно было бы сразу на 5 В, но так как плата закреплена в корпусе на клей - отдирать не стал, да и падение напряжения на КРЕН7805 в два Вольта - небольшая потеря:)

Мой новый конструктор выглядел так:

Маленькая платка преобразователя была "обута" в термоусадку, произведена распайка всех проводов, разъём для кроны нам больше не понадобится. Просто дырка в корпусе смотрится не очень, поэтому мы его оставим, но провода откусим. Внутри корпуса не осталось места для аккумулятора, поэтому я приклеил батарею на тыльную сторону прибора и приделал ему ножки, чтобы в рабочем состоянии он не лежал на аккумуляторе.

На лицевой стороне вырезал отверстия для кнопки питания и светодиода индикации успешной зарядки. Индикацию заряда аккумулятора не делал.

Потом решил, что раз пошла такая пьянка неплохо было бы видать экран в темноте, на случай ремонта при свечах, если отключат свет, а работать хочется:)

Но это уже после того, как появился более понтовый RLC-2. Подробнее об этом приборе в этой статье.


Как проверить конденсатор. Теоретические сведения о конденсаторах

В основном по конструктивному исполнению конденсаторы бывают двух типов: полярные и неполярные. К полярным относятся электролитические конденсаторы, к неполярным можно отнести все остальные. Полярные конденсаторы получили свое название от того, что используя их в различных самоделках необходимо соблюдать полярность, если ее случайно нарушить, то конденсатор скорей всего придется выкинуть. Так как взрыв емкости, не только красив своими эффектами, но и очень опасен.


Но сразу-то не пугайтесь взрываются только конденсаторы советского типа, но их уже тяжело найти, а импортный лишь чуть "пукнет". Для проверки конденсатора придется вспомнить , а именно: то что, конденсатор пропускает только переменный ток, постоянный ток он пропускает только в самом начале на несколько микросекунд (это время зависит от его емкости), а потом - не пропускает. Для того, чтобы проверить конденсатор с помощью мультиметра, нужно помнить, что его емкость должна быть от 0.25 мкФ.

Как проверить конденсатор. Практическе эксперименты и опыты

Берем мультиметр и ставим его на прозвонку или на измерение сопротивления, а щупы соединяем с выводами конденсатора.

Т.к с мультиметра поступает постоянный ток мы будем заряжать конденсатор. А т.к мы его заряжаем, его сопротивление начинает возрастать, пока не будет очень большим. Если же у нас при соединение щупов с конденсатором, мультиметр начинает пищать и показывать нулевое сопротивление, то значит выкидываем его. А если у нас сразу же показывается единичка на мультиметре, значит внутри конденсатора произошел обрыв и его тоже следует выкинуть

PS: Большие емкости таким способом вы не сможете проверить :(

В современных схемах роль конденсаторов заметно возросла, т.к увеличились и мощности и частоты работы устройств. И поэтому очень важно проверять этот параметр у всех электролитов перед сборкой схемы или во время диагностирования неисправности.

Equivalent Series Resistance - эквивалентное последовательное сопротивление это сумма последовательно соединенных омических сопротивлений контактов выводов и электролита с обкладками электролитического конденсатора.

Измеритель ESR на базе стрелочного мультиметра Sunwa YX-1000A


Схема работает по принципу тестирования конденсатора переменным током заданной величины. Тогда падение напряжения на конденсаторе прямо пропорционально модулю его комплексного сопротивления. Такой прибор определит не только на увеличенное внутреннее сопротивление, но и потерю емкости. Схема состоит из трех основных частей генератора прямоугольных импульсов, преобразователя и индикации

Генератор прямоугольных импульсов собран на цифровой микросхеме, состоящей из шести логических элементов НЕ. Роль преобразователя переменного напряжения в постоянное выполняет DA2, а индикация на микросхеме DA3 и 10 светодиодах.

Шкала измерителя ESR нелинейная. Для возможности расширения диапазона измерений имеется переключатель диапазонов. выполненный в программе Sprint Layout также имеется.

Оксидный электролит можно упрощенно представить в виде двух алюминиевых ленточных обкладок, разделенных прокладкой из пористого материала, пропитанного специальным составом - электролитом. Диэлектриком в таких элементах является очень тонкая оксидная пленка, образующаяся на поверхности алюминиевой фольги при подаче на обкладки напряжения определенной полярности. К этим ленточным обкладкам присоединяются проволочные выводы. Ленты сворачиваются в рулон, и все это помещается в герметичный корпус. Благодаря очень малой толщине диэлектрика и большой площади обкладок оксидные конденсаторы при малых габаритах имеют достаточно большую емкость.

Основу этой схемы составляют восемь операционных усилителей с отрицательной обратной связью и занимают устойчивое рабочее положение, если их два входа совпадают по подаваемому напряжению. Усилители 1A и 1B генерируют колебания частотой 100 кГц, которая задается цепочкой C1 и R1. Диоды D2 и D3 предназначены для ограничения нижней и верхней амплитуды выходного сигнала, поэтому уровень и частота устойчивы к изменения напряжения питания батареи.


Эта радиолюбительская схема позволяет контролировать ЭПС в цепях до 600 вольт, но только в том случае, если схема не имеет переменного напряжения частотой более 100 Гц.

Выход ОУ 1B нагружен на резистор R8F. Тестируемый конденсатор подключен через щупы. Конденсатор C3 блокировочный. Диоды D4 и D5 защищают устройство от зарядного тока конденсатора C3. Резистор R7 предназначен для разряда C3 после измерения. Постоянное напряжение смещения от диода D1 и сигнала с резистора R9F сумируются на входе операционного усилителя 1D. Каждый из трех каскадов обладает коэффициентом усиления 2,8.


Детали: 1. ОУ микросхемы LM324N. 2. "F" резисторы 1% точности; все другие-5% 3. R7 от 0,5 ватта, остальные 0,25 Вт. 4. R21 устанавливает линейность в середине шкалы: 330 до 2,2 Ома. 5. R24 корректирует смещение постоянного тока на бесконечности ЭПС. 6. R26 помогает установить нуль (полная шкала): 68 до 240 ом. 7. R6F=150 Ом, R12F=681 Ом

ESR метр на доступных радиокомпонентах

Схема пробника состоит из: генератора, измерительной цепи, усилителя, индикатора. Т1- составной транзистор. В роли индикатора использована самодельная светодиодная шкала.


Для ускорения процесса сборки, пробник для проверки конденсаторов выполнен на макетной плате и помещен в корпус из отрезка кабель канала. Шупы выполнены из медной проволки


В комплект поставки входит сам измерительный прибор, три щупа к нему и четыре ножки для платы. Esr метр рассчитан на работу от литиевого аккумулятором типа 14500 напряжением 3,7 вольта, но его можно не заказывать, а взять из старой батареи от ноутбука, и плевать, что он больше по размеру.


Об управлении ESR метром.

1 - USB для питания и зарядки аккумулятора. Прибором для проверки электролитических конденсаторов можно пользоваться и без литиевого аккумулятора, используя внешнее питание, но тогда погрешность прибора чуть-чуть возрастает.
2 - включение устройства
3 - Индикатор работы. Начинает светится после того, как пробник переходит в режим теста
4 - Кнопка старта процесса измерения. Ее нажимаем только после подсоединения измеряемой емкости к контактам
5 - Разъемы для подсоединения измерительных щупов, или подходящих по размеру транзисторов
6 - Панелька для измерения мелких радиокомпонентов, ножки которых могут войти в отверстие
7 - Контактные площадки для проверки SMD.

MG328 рассчитан на работу от батареи типа 14500, но я решил установить туда аккумулятор типа 18650. Для этого, я отпаял родной держатель и напрямую припаял на его место элемент 18650. По габаритам, все вписалось в стандартные размеры готовой платы.


После подачи питания на плату от usb, начинает светить индикатор зарядки. В устройстве имеется режим само тестирования. Для его запуска, нужно соединить вместе все три щупа, и нажать кнопку тест. После этого, DIY MG328 переключится в режим самотестирования. Кроме того, в этот режим можно попасть и через меню. Для этого потребуется нажать кнопку тестирования на две секунды.

Для навигации в меню, нужно нажать кнопку тестирования, для выбора любого из пунктов, а затем зажать эту же кнопку на несколько секунд. Приятной неожиданностью, был найденый пункт меню - генератор частоты.

На фотографиях ниже, показаны примеры измерения различных типов радиокомпонентов.


В общем, измерительным прибором доволен как слон. Уже во многих своих ремонтах находил убитые конденсаторы, без внешних признаков проблем.

Начало

Да, эта тема многократно обсуждалась, в том числе и здесь. Я собрал два варианта схемы Ludens и они очень хорошо себя зарекомендовали, тем не менее, у всех предлагаемых ранее вариантов есть недостатки. Шкалы приборов со стрелочными индикаторами очень нелинейны и требуют для калибровки много низкоомных резисторов, эти шкалы надо рисовать и вставлять в головки. Приборные головки велики и тяжелы, хрупки, а корпуса малогабаритных пластмассовых индикаторов обычно запаяны и они часто имеют мелкую шкалу. Слабым местом почти всех предыдущих конструкций является их низкая разрешающая способность. А для конденсаторов LowESR как раз надо измерять сотые доли Ома в диапазоне от нуля до половины Ома. Предлагались также приборы на основе микроконтроллеров с цифровой шкалой, но не всякий занимается микроконтроллерами и их прошивками, устройство получается неоправданно сложным и относительно дорогим. Поэтому в журнале «Радио» сделали разумную рациональную схему - цифровой тестер есть у любого радиолюбителя, да и стоит он копейки.

Я внес минимальные изменения. Корпус - от неисправного «электронного дросселя» для галогеновых ламп. Питание - батарея «Крона» 9 Вольт и стабилизатор 78L05 . Убрал переключатель - измерять LowESR в диапазоне до 200 Ом надо очень редко (если приспичит, использую параллельное подключение). Изменил некоторые детали. Микросхема 74HC132N , транзисторы 2N7000 (to92) и IRLML2502 (sot23). Из-за увеличения напряжения с 3 до 5 Вольт отпала необходимость подбора транзисторов.
При испытаниях устройство нормально работало при напряжении батареи свежей 9,6 В до полностью разряженной 6 В.

Кроме того, для удобства, использовал smd-резисторы. Все smd-элементы прекрасно паяются паяльником ЭПСН-25. Вместо последовательного соединения R6R7 я использовал параллельное соединение - так удобнее, на плате я предусмотрел подключение переменного резистора параллельно R6 для подстройки нуля, но оказалось, что «нуль» стабилен во всем диапазоне указанных мною напряжений.

Удивление вызвало то, что в конструкции «разработанной в журнале» перепутана полярность подключения VT1 - перепутаны сток и исток (поправьте, если я неправ). Знаю, что транзисторы будут работать и при таком включении, но для редакторов такие ошибки недопустимы.

Итого

Данный прибор работает у меня около месяца, его показания при измерениях конденсаторов с ESR в единицы Ом совпадают с прибором по схеме Ludens .
Он уже прошёл проверку в боевых условиях, когда у меня перестал включаться компьютер из-за емкостей в блоке питания, при этом не было явных следов «перегорания», а конденсаторы были не вздувшимися.

Точность показаний в диапазоне 0,01…0,1 Ом позволила отбраковать сомнительные и не выбрасывать старые выпаянные, но имеющие нормальную ёмкость и ESR конденсаторы. Прибор прост в изготовлении, детали доступны и дёшевы, толщина дорожек позволяет их рисовать даже спичкой.
На мой взгляд, схема очень удачна и заслуживает повторения.

Файлы

Печатная плата:
🕗 25/09/11 ⚖️ 14,22 Kb ⇣ 669 Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года.
Уже более 10 лет наш журнал существует только на мои средства.

Хорош! Халява кончилась. Хочешь файлы и полезные статьи - помоги мне!