Как работает четырех ядерный процессор. Многоядерные процессоры. Выяснение родственных связей

Процессор в мобильном телефоне. Характеристики и их значение

Индустрия смартфонов с каждым днем прогрессирует, и, как результат, пользователи получают всё более новые, современные и мощные гаджеты. Все производители смартфонов стремятся сделать свое творение особенным и незаменимым. Поэтому на сегодняшний день большое внимание уделяется разработке и производству процессоров для смартфонов.

Наверняка, у многих любителей «умных телефонов» не раз возникал вопрос, что такое процессор, и какие его основные функции? А также, несомненно, покупателей интересует, что обозначают все эти циферки и буквы в названии чипа.
Предлагаем немного ознакомиться с понятием «процессор для смартфона» .

Процессор в смартфоне - это самая сложная деталь и отвечает она за все вычисления, производимые устройством. По сути, говорить, что в смартфоне используется процессор, неправильно, так как процессоры как таковые в мобильных устройствах не используются. Процессор вместе с другими компонентами образуют SoC (System on a chip – система на кристалле), а это значит, что на одной микросхеме находится полноценный компьютер с процессором, графическим ускорителем и другими компонентами.

Если речь заходит о процессоре, то сперва надо разобраться с таким понятием, как «архитектура процессора» . Современные смартфоны используют процессоры на архитектуре ARM, разработкой которой занимается одноименная компания ARM Limited. Можно сказать, что архитектура - это некий набор свойств и качеств, присущий целому семейству процессоров. Компании Qualcomm, Nvidia, Samsung, MediaTek, Apple и другие, занимающиеся производством процессоров, лицензируют технологию у ARM и затем продают готовые чипы производителям смартфонов или же используют их в собственных устройствах. Производители чипов лицензируют у ARM отдельные ядра, наборы инструкций и сопутствующие технологии. Компания ARM Limited не производит процессоры, а только продает лицензии на свои технологии другим производителям.

Сейчас давайте рассмотрим такие понятия, как ядро и тактовая частота, которые всегда встречаются в обзорах и статьях о смартфонах и телефонах, когда речь идет о процессоре.

Ядро

Начнем с вопроса, а что такое ядро? Ядро – это элемент чипа, который определяет производительность, энергопотребление и тактовую частоту процессора. Очень часто мы сталкиваемся с понятием двухъядерный или четырехъядерный процессор. Давайте разберемся, что же это значит.

Двухъядерный или четырехъядерный процессор – в чем разница?

Очень часто покупатели думают, что двухъядерный процессор в два раза мощнее, чем одноядерный, а четырехъядерный, соответственно, в четыре раза. А теперь мы расскажем вам правду. Казалось бы, вполне логично, что переход с одного ядра к двум, а с двух к четырем увеличивает производительность, но на самом деле редко когда эта мощность возрастает в два или четыре раза. Увеличение количества ядер позволяет ускорить работу девайса за счет перераспределения выполняемых процессов. Но большинство современных приложений являются однопотоковыми и поэтому одновременно могут использовать только одно или два ядра. Естественно возникает вопрос, для чего тогда четырехъядерный процессор? Многоядерность, в основном, используется продвинутыми играми и приложениями по редактированию мультимедийных файлов. А это значит, что если вам нужен смартфон для игр (трехмерные игры) или съемки Full HD видео, то необходимо приобретать аппарат с четырехъядерным процессором. Если же программа сама по себе не поддерживает многоядерность и не требует затраты больших ресурсов, то неиспользуемые ядра автоматически отключаются для экономии заряда батареи. Часто для самых неприхотливых задач используется пятое ядро-компаньон, например, для работы устройства в спящем режиме или при проверке почты.

Если вам нужен обыкновенный смартфон для общения, интернет-серфинга, проверки почты или для того, чтобы быть в курсе всех последних новостей, то вам вполне подойдет и двухъядерный процессор. Да и зачем платить больше? Ведь количество ядер прямо влияет на цену устройства.

Тактовая частота

Следующее понятие, с которым нам предстоит познакомиться - это тактовая частота. Тактовая частота – это характеристика процессора, которая показывает, сколько тактов способен отработать процессор за единицу времени (одну секунду). Например, если в характеристиках устройства указана частота 1,7 ГГц - это значит, что за 1 секунду его процессор осуществит 1 700 000 000 (1 миллиард 700 миллионов) тактов .

В зависимости от операции, а также типа чипа, количество тактов, затрачиваемое на выполнение чипом одной задачи, может отличаться. Чем выше тактовая частота, тем выше скорость работы. Особенно эта разница чувствуется, если сравнивать одинаковые ядра, работающие на разной частоте.

Иногда производитель ограничивает тактовую частоту с целью уменьшения энергопотребления, потому как чем выше скорость процессора, тем больше энергии он потребляет.

И опять возвращаемся к многоядерности. Увеличение тактовой частоты (МГц, ГГц) может увеличить выработку тепла, а это крайне нежелательно и даже вредно для пользователей смартфонов. Поэтому многоядерная технология также используется как один из способов увеличения производительности работы смартфона, при этом не нагревая его в вашем кармане.

Производительность увеличивается, позволяя приложениям работать одновременно на нескольких ядрах, но есть одно условие: приложения должны последнего поколения. Такая возможность также позволяет экономить расход заряда батареи.

Кэш процессора

Еще одна важная характеристика процессора, о которой продавцы смартфонов часто умалчивают - это кэш процессора .

Кэш – это память, предназначенная для временного хранения данных и работающая на частоте процессора. Кэш используется для того, чтобы уменьшить время доступа процессора к медленной оперативной памяти. Он хранит копии части данных оперативной па-мяти. Время доступа уменьшается за счет того, что большинство данных, требуемых процессо-ром, оказываются в кэше, и количество обращений к оперативной памяти снижается. Чем больше объем кэша, тем большую часть необходимых программе данных он мо-жет в себе содержать , тем реже будут происходить обращения к оперативной памяти, и тем выше будет общее быстродействие системы.

Особенно актуален кэш в современных системах, где разрыв между скоростью работы процес-сора и скоростью работы оперативной памяти довольно большой. Конечно, возникает вопрос, почему же эту характеристику не желают упоминать? Всё очень просто. Наведем пример. Предположим, что есть два всем известных процессора (условно A и B) с абсолютно одинаковым числом ядер и тактовой частотой, но почему-то А работает намного быстрее, чем В. Объяснить это очень просто: у процессора А кэш больше, следовательно, и сам процессор работает быстрее.

Особенно разница в объеме кэша ощущается между китайскими и брендовыми телефонами. Казалось бы, по циферках характеристик всё вроде как совпадает, а вот цена устройств отличается. И вот здесь покупатели решают сэкономить с мыслью «а зачем платить больше, если нет никакой разницы?» Но, как видим, разница есть и очень существенная, только вот продавцы о ней часто умалчивают и продают китайские телефоны по завышенным ценам.

В наше прогрессивное время, количество ядер играет главенствующую роль в выборе компьютера. Ведь именно благодаря ядрам, расположенным в процессоре, измеряется мощность компьютера, его скорость во время обрабатывания данных и выдачи полученного результата. Расположены ядра в кристалле процессора, и их количество в данный момент может достигать от одного до четырёх.

В то «давнее время», когда ещё не существовало четырёхядерных процессоров, да и двухядерные были в диковинку, скорость мощности компьютера измерялась в тактовой частоте. Процессор обрабатывал всего один поток информации, и как вы понимаете, пока полученный результат обработки доходил до пользователя, проходило энное количество времени. Теперь же многоядерный процессор, с помощью специально предназначенных улучшенных программ, разделяет обработку данных на несколько отдельных, независимых друг от друга потоков, что значительно ускоряет получаемый результат и увеличивает мощностные данные компьютера. Но, важно знать, что если приложение не настроено на работу с многоядерностью, то скорость будет даже ниже, чем у одноядерного процессора с хорошей тактовой частотой. Так как узнать сколько ядер в компьютере?

Центральный процессор – одна из главнейших частей любого компьютера, и определить, сколько ядер в нём, является вполне посильной задачей и для начинающего компьютерного гения, ведь от этого зависит ваше успешное превращение в опытного компьютерного зубра. Итак, определяем, сколько ядер в вашем компьютере.

Приём №1

  • С лева открывается окно, найдите пункт «Диспетчер устройств».
  • Для того чтоб раскрыть список процессоров, находящихся в вашем компьютере, нажмите на стрелку, размещённую левее основных пунктов, в том числе пункта «Процессоры».

  • Подсчитав, сколько процессоров находится в списке, вы можете с уверенностью сказать, сколько ядер в процессоре, ведь каждое ядро будет иметь хоть и повторяющуюся, но отдельную запись. В образце, представленном вам, видно, что ядер два.

Этот способ подходит для операционных систем Windows, а вот на процессорах Intel, отличающихся гиперпоточностью (технология Hyper-threading), этот способ, скорее всего, выдаст ошибочное обозначение, ведь в них одно физическое ядро может разделяться на два потока, независимых один от одного. В итоге, программа, которая хороша для одной операционной системы, для этой посчитает каждый независимый поток за отдельное ядро, и вы получите в результате восьмиядерный процессор. Поэтому, если у вас процессор поддерживает технологию Hyper-threading, обратитесь к специальной утилит – диагностике.

Приём №2

Существуют бесплатные программы для любопытствующих о количестве ядер в процессоре. Так, неоплачиваемая программа CPU-Z, вполне справится с поставленной вами задачей. Для того чтоб воспользоваться программой:

  • зайдите на официальный сайт cpuid.com , и скачайте архив с CPU-Z. Лучше воспользоваться версией, которую не нужно устанавливать на компьютер, на этой версии стоит обозначение «no installation».
  • Далее следует распаковать программу и спровоцировать её запуск в исполняемом файле.
  • В открывшемся главном окне этой программы, на вкладке «CPU», в нижней части найдите пункт «Cores». Вот здесь и будет указано точное количество ядер вашего процессора.

Можно узнать, сколько ядер в компьютере с установленной системой Windows, с помощью диспетчера задач.

Приём №3

Очерёдность действий такая:

  • Запускаем диспетчер с помощью клика правой стороны мышки на панели быстрого запуска, обычно расположенной внизу.
  • Откроется окно, ищем в нём пункт «Запустить диспетчер задач»

  • В самом верху диспетчера задач Windows находится вкладка «Быстродействие», вот в ней, с помощью хронологической загрузки центральной памяти и видно количество ядер. Ведь каждое окно и обозначает ядро, показывая его загрузку.

Приём №4

И ещё одна возможность для подсчёта ядер компьютера, для этого нужна будет любая документация на компьютер, с полным перечнем комплектующих деталей. Найдите запись о процессоре. Если процессор относится к AMD, то обратите внимание на символ Х и стоящую рядом цифру. Если стоит Х 2, то значит, вам достался процессор с двумя ядрами, и т.д.

В процессорах Intel количество ядер прописывается словами. Если стоит Core 2 Duo, Dual, то ядра два, если Quad – четыре.

Конечно, можно сосчитать ядра, зайдя на материнскую плату через BIOS, но стоит ли это делать, когда описанные способы дадут вполне чёткий ответ по интересующему вас вопросу, и вы сможете проверить, правду ли сказали вам в магазине и сосчитать, сколько же ядер в вашем компьютере самостоятельно.

P.S. Ну вот и все, теперь мы знаем как узнать сколько ядер в компьютере, даже целых четыре способа, а уж какой применить — это уже ваше решение 😉

Вконтакте

Статья постоянно обновляется. Последнее обновление 10.10.2013 р.

На данный момент рынок процессоров развивается настолько динамично, что уследить за всеми новинками и угнаться за прогрессом просто невозможно.
Но нам особо это и не нужно.
Нам, для того, чтобы купить процессор, достаточно знать для чего нужен будет компьютер, какие задачи он будет выполнять, и какую сумму денег мы готовы потратить.

На сегодняшний день заслуженными лидерами рынка процессоров являются две крупнейшие компании Intel и AMD .
Они предлагают широчайший выбор моделей любой ценовой категории. И от такого выбора процессоров разбегаются глаза.
А мы попробуем помочь Вам в этом разобраться, чтоб Вы смогли выбрать и купить производительный процессор и за нормальные деньги.

Начнём с того, что основными показателями производительности у процессора являются:

1) Архитектура процессора. Ведь новая архитектура будет всегда производительней чем предыдущая (несмотря на одинаковую частоту) .
2) Рабочая частота. Чем выше частота процессора тем он производительнее.
3) размер кэш-памяти второго и третьего уровней (L2 и L3);

Ну, а второстепенными показателями:
4) ;
5) технологический процесс;
6) набор инструкций;
и др.

Хотя сейчас находчивые консультанты в магазинах стараются больше акцентировать внимание на количестве ядер, напрямую связывая количество ядер со скоростью обработки данных и производительностью самого компьютера.

Количество ядер?

На сегодняшний день в продаже уже имеются восьми-, шести-, четырёх-, двух- и одноядерные процессоры от AMD , а также шести-, четырёх-, двух-, одноядерные от INTEL .
Но для сегодняшних программ и нужд домашнего геймера вполне достаточно двух- или четырёхъядерного процессора, работающего на высокой частоте.
Процессор с большим количеством ядер (6-8), понадобится лишь для программ кодирования видео и аудио контента, рендеринга изображений и архиваторов.

На данный момент оптимизация в игровой индустрии идет, в основном, на двухъядерные процессоры, только самое новое ПО и игры будут разрабатываться под многопоточные вычисления. Так что если Вы покупаете процессор для игр, то высокочастотный двухъядерный процессор окажется быстрее, чем низкочастотный, но трех- или четырехядерный процессор.

Внимание! У Вас нет прав для просмотра скрытого текста.


И выяснилось, что пока игрокам можно остановиться на современном двухъядерном процессоре, выбрав для себя решение с подходящим соотношением производительности и цены.
При этом стоит учитывать, что чипы Intel к тому же обладают технологией HyperThreading, позволяющей исполнять на каждом ядре две параллельные задачи. Операционная система видит 2х ядерные процессоры как четырёхядерные, а 4-х ядерные как восьмиядерные.
Процессоры с большим количеством ядер могут быть востребованы, в основном, в профессиональных приложениях и кодировании видео.
Восемь/шесть ядер пока не способна полностью загрузить ни одна игра.

Немного подытожим по ядрам.

Для офисного компьютера с головой хватит двухъядерного процессора нижнего ценового диапазона.
Типа Pentium, Celeron от Intel или A4, AthlonII X2 от AMD.

Для домашнего геймерского компьютера можно купить двухъядерный процессор Intel повышенной частоты или четырёхъядерный процессор от AMD.
Типа Core i3, Core i5 частотой от 3 ГГц Intel или A8, A10, Phenom™ II X4 с частотой от 3 ГГц AMD.

Ну, и для "заряженной" рабочей станции или геймерской системы hi-end понадобится хороший четырёхъядерный процессор нового поколения.
Типа Core i5, Core i7 от Intel, так как процессоры AMD очень редко используются в высокопроизводительных машинах.

О процессорах Core i3, Core i5 и Core i7 читаем в статьe:

Производительность процессора?

Как было указано выше, важным параметром является архитектура , на которой основан/выполнен процессор. Чем новее архитектура, тем "шустрее" показывает себя процессор в приложениях и играх. Так как любая последующая архитектура, что Intel, что AMD, будет всегда производительнее предыдущей.
На данный момент актуальны процессоры семейства Haswell (4-ое поколение) и Ivy Bridge (3-е поколение), а также процессоры архитектуры Piledriver семейства Richland, Trinity от AMD .

Также производительность процессора зависит от его рабочей частоты . Чем выше рабочая частота, тем производительней процессор. Актуальная рабочая частота ядер, на данный момент, от 3ГГц и выше.
Но при сравнении между собой процессоров AMD и INTEL при одинаковой тактовой частоте, не означает что они равны по производительности.
Особенности архитектуры позволяют процессорам INTEL показывать более высокую продуктивность даже с меньшей частотой, чем у конкурента.

Примечание: нельзя просто приплюсовать частоту двух ядер. Определяется, как два ядра по XX ГГц.

Ещё одним параметром производительности является размер, объём, сверхбыстрой кэш-памяти второго и третьего уровней L2 и L3 .
Это память с большой скоростью доступа, предназначенная для ускорения обращения к данным, которые обрабатывает процессор.
Чем больше объём кэш памяти, тем выше производительность.

Примечание: Core 2 Duo, Core 2 Quad имеют только L2, Core i5, Core i7 имеют L2+L3, процессоры AMD Athlon™ II X2 имеют только L2, Phenom™ II X4 имеют L2+L3.

У более ранних Core 2 показателем была частота шины FSB процессора. Частота шины, через которую процессор обменивается данными с оперативной памятью.
Чем выше частота FSB шины, тем выше производительность процессора.

Примечание: процессоры Core i3, Core i5 и Core i7 от компании Intel не имеют системной шины FSB, также как и в последних процессорах AMD, передача данных между памятью и процессором происходит напрямую.
Такой метод передачи данных значительно увеличил производительность.
У процессоров семейства Core i7 LGA1366 тоже нет шины FSB, а есть высокоскоростная шина QPI.

Технологический процесс (проектная норма процессора) определяет в первую очередь структурный размер тех элементов, из которых состоит процессор.
В частности, от технологического процесса производства зависит тепловыделение и энергопотребление современных процессоров.
Чем меньше эта величина (технологический процесс), тем меньше тепла выделяет процессор и меньше потребляет энергии.
Более ранние процессоры Core 2 были выполнены по 45- 65-нанометровой технологиям. Более новые Haswell и Ivy Bridge Corei3, Corei5, Core i7 четвёртого и третьего поколения по 22-нм, Sandy Bridge® Corei3, Corei5, Core i7 второго поколения от Intel и Bulldozer от AMD выполнены по технологии 32 нм.

Набор инструкций - это набор допустимых для процессора управляющих кодов и способов адресации данных. Система таких команд жестко связана с конкретным типом процессора.
Чем шире набор инструкций у процессора, тем лучше и быстрее обрабатываются данные.

Боксовая комплектация (BOX) или трей (Tray/ОЕМ)?

Боксовая (BOX) комплектация представляет собой комплект:
- сам процессор;
- кулер с нанесённой термопастой (радиатор+вентилятор);
- инструкция и документация.

Отличительной особенностью BOX-комплектации является расширенная гарантия на процессор - 3 года.
BOX-процессоры лучше брать для офисных и домашних мультимедийных систем, в которых не планируется смена охлаждения на более эффективное.
Но BOX-процессоры стоят немного дороже, чем такие же TRAY.

Трей-процессор (Tray/OEM) представляет собой только процессор. Нет кулера и документов.

В отличии от BOX гарантия на Tray-процессор всего лишь 1 год.
Tray/OEM процессоры используют фирмы-сборщики готовых брендовых компьютеров. А также энтузиасты геймеры-оверклокеры, которым не принципиальны гарантия (после разгона гарантия с изделия снимается) и родное охлаждение, т.к. на процессор сразу устанавливается более эффективное.
Tray-процессоры стоят немного дешевле.

Intel или AMD?

На эту тему всегда шли ожесточенный споры на форумах и конференциях. Вообще, эта тема является вечной. Сторонники Intel будут утверждать, что эти процессоры во всех отношениях лучше, чем у конкурента. И наоборот. Сам же я являюсь приверженцем Intel.

Если сравнить одинаковые по частоте и количеству ядер процессоры двух этих компаний, то процессоры Intel будут более производительнее. Однако в ценовом диапазоне преимущество у AMD.

Если вы собираете себе бюджетную систему на минимальные финансы, то процессоры AMD - ваш выбор. Если же у вас будет игровая или производительная вычислительная система, то выбор стоит сделать в пользу Intel.

Есть ещё один момент, материнские платы для процессоров Intel также стоят дороже, а платформа AMD соответственно дешевле. Выбирая процессор для своего ПК, нужно определится с начальными приоритетами, собрать недорогую систему на AMD или более производительную, но подороже на базе Intel.

В ассортименте каждой компании есть много моделей процессоров, начиная от бюджетных, например, Celeron у Intel и Sempron/Duron у AMD, до топовых Core i7 у Intel, A10 у AMD.

В разных приложениях результаты довольно различны, так в некоторых победу одерживают процессоры AMD, в других - Intel, поэтому выбор всегда остается за пользователем.

Просто у AMD есть одно неоспоримое преимущество - это цена. И один недостаток - процессоры от AMD не столь конструктивно надёжны и немного горячее.

У Intel тоже есть преимущество - процессоры более конструктивно надёжны и стабильны, а также менее горячие. Недостаток - цена выше, чем у конкурента.

Судя по нынешним тестам игровая производительность процессоров между INTEL и AMD имеет такой вид:




Подведём итоги:

Значит, чтобы купить максимально производительный игровой процессор для компьютера, нужно выбрать процессор с:
1) наиболее новой архитектурой;
2) максимальной частотой ядра (желательно от 3 ГГц и выше);
3) максимальным размером кэша L2/L3;
4) большим набором доступных инструкций;
5) минимальным технологическим процессом изготовления.

После прочтения этой статьи, я думаю, каждый сможет определится с тем, какой процессор купить ему для своего компьютера.
Купить процессоры за большие деньги можно всегда, но если на компьютере будут выполняться только бытовые задачи, не требующие большой вычислительной мощности - деньги будут потрачены впустую.

Нельзя разобраться с этим вопросом, не зная, что собой представляет 4-х ядерный процессор. С одно-, двух- и трехъядерными процессорами все просто: они имеют одно, два или три ядра соответственно. А что касается 4-х ядерного, то тут не все так, как кажется на первый взгляд.

2-х или 4-х ядерный процессор?

Большинство людей ошибаются, думая, что частота каждого ядра складывается. Раз 2.5 Ггц частота ядер, а ядра 4, то значит 2.5*4= 10Ггц. Но это не так: частота всегда одна — 2.5 Ггц. Почему же частота не складывается? Потому, что с этой частотой параллельно работает каждый процессор.

Порция — это часть времени, на вычисление которой процессор выделяет ресурсы всем потокам, попавшим в процессор. Это как 4-ре магистрали с предельной скоростью 60 км/час (2.5 Ггц): у нас есть грузовики, которые должны доставить нам товары (это наши кусочки программы или порции программы), и чтобы нам повысить скорость доставки (повысить работоспособность системы), нам нужно использовать все 4-ре магистрали или повысить предельную скорость (3.0 Ггц). Но для большинства программ невозможно работать в несколько потоков, так как они работают в один поток и способны использовать лишь одну магистраль (а значит нашей программе будет выделено лишь 25% общей мощности процессора) потому, что в программе логика должна выполняться последовательно (поточно), и если нарушить последовательность, нарушится логика, а это приведет к сбоям. Новые программы стараются использовать мультипрограммирование — возможность работать в несколько потоков (наших магистралей), а не в одну, как большинство программ сейчас. Игры, по большей части тоже оптимизированы под многопоточность, но основной поток обычно работает в один. Хоть сейчас и пытаются разделить его на несколько, чтобы облегчить и ускорить. Поэтому для игр или приложений, которые обычно работают в один или два потока, лучше взять 2-ух ядерный процессор.

Если частота у двухъядерного такая же, как у четырехъядерного, то лучше конечно взять четырехъядерный, ведь у нас же одновременно работает огромное количество программ, пускай и слабых по нагрузке. Мы выиграем производительность системы за счет того, что все другие процессы могут быть вытеснены на другое ядро при полной загрузке одного из них. Но обычно частота у новых двухъядерных выше, чем у новых четырехъядерных. Именно поэтому при тестах в играх побеждают 2-ух ядерные с большей частотой, чем 4-ех ядерные с меньшей.

Теперь об очередях:

Теперь поймем, что при переходе от одноядерного к двуядерному, скорость возрастает быстрее не только за счет одновременной обработки ядрами, но и за счет ожидания и очереди на процессоре.

Частота у одноядерного процессора и двухъядерного одна и та же, но работает компьютер быстрее с 2-я ядрами. Дело в мультипрограммировании, когда осуществляется переход с одноядерного на двухъядерный, то скорость возрастает в разы. А мультипрограммирование — это работа с потоками. Представим себе 2 потока, например, работа Windows и запущенная компьютерная игра. Если у нас имеется одно ядро, то обрабатывается последовательно то игра (порция), то работа Windows (порция). Процессам приходиться ждать очереди, т. е. когда «кусочек» игры обрабатывается, то Windows приходится ждать конца обработки игры (порции игры). Когда мы перешли на 2 ядра, то даже с той же частотой, как у одноядерного, компьютер начинает более быструю обработку, так как очередь уменьшается в 2 раза.

Объясню подробнее на примере 100 приложений, если у нас 1 ядро, то 1 приложение обрабатывается, остальные 99 ждут своей очереди. И чем длиннее очередь, тем дольше идет обновления, и тогда мы чувствуем, что у нас тормозит система. А когда у нас 2 ядра, то очередь делится наполовину, т. е. 50 приложений на одном и 50 на другом, следовательно, их проще и быстрее обновлять. Важно знать, что очередь становится меньше и наши приложения быстрее обновляются.

Для теста потока запустите winrar, чтобы сжимать большой файл, и посмотрите в диспетчере (он сжимает в один поток), сколько ресурсов процессора он будет использовать (25%- на 4-ех ядерном и 50% на 2-ух). Из этого следует, что нашей игре, если она работает в один поток в четырехъядерном процессоре, будет выделено 25 % мощности процессора, 50%, если в двухъядерном. В играх у нас многопоточность присутствует, но главный поток в игре все равно будет обрабатываться на четверть процессора (в четырехъядерном).

Все рассматривалось упрощенно, 2-х ядерный с большей частотой подходит лучше для игр, так как больше частоты выделяется одному потоку, а 4-х ядерный подходит для много-поточных данных, например, множество запущенных одновременно приложений.

У 2-ух ядерного процессора i5 есть технология позволяющая имитировать работу системы, как с 4-х ядерным процессором. Фактически есть только 2 ядра, но для Windows имитируется работа 4-х ядер. 4 очереди (потока) по 2 очереди (потока) на ядро обрабатываются по очереди. Каждое ядро берет по порции каждого из потоков, то есть он способен быть четырехъядерным.

Многоя́дерный проце́ссор - центральный процессор, содержащий два и более вычислительных ядра на одном процессорном кристалле или в одном корпусе.

Среди многоядерных процессоров к данному моменту можно выделить

*процессоры, предназначенные в основном для встраиваемых и мобильных приложений, в которых большое внимание разработчиков было уделено средствам и методам снижения энергопотребления (SEAforth (SEAforth24, seaforth40), Tile (Tile36, Tile64, Tile64pro), AsAP-II, CSX700);

*процессоры для вычислительных или графических станций, где вопросы энергопотребления не столь критичны (графические процессоры, например, процессоры серии g80 от NVIDIA, проект Larrabee от Intel, отчасти сюда можно отнести и процессор Cell от IBM, хотя количество вычислительных ядер у него относительно невысоко);

* процессоры т.н. мейнстрима - предназначенные для серверных, рабочих станций и персональных компьютеров (AMD, Intel, Sun);

  • Количество ядер (Количество ядер. Ядро (core) – кристалл кремния площадью примерно один квадратный сантиметр, на котором посредством микроскопических логических элементов реализована принципиальная схема процессора, так называемая архитектура. Каждое ядро воспринимается системой как отдельный, самостоятельный процессоров, со всем необходимым набором функций.)

Тактовая частота (такт - элементарная операция в секунду, которую может выполнить процессор. Следовательно, количество тактов - это показатель, сколько операций в секунду времени способен обработать процессор. Единицей измерения этого параметра являются гигагерцы ГГц.)

Кеш-память (память, непосредственно встроенная в процессор, и используемая для хранения и обращения к часто используемым данным, называется кеш-память. Она делиться на несколько уровней - L1, L2 и L3. Вышестоящий уровень кеш-памяти имеет больший объем, но менее скоростной доступ к данным.)

Разрядность (определяет количество информации, которой может обменяться процессор с оперативной памятью за один такт. Параметр этот измеряется в битах. Параметр разрядности влияет на объем возможной оперативной памяти - 32-х битный процессор может работать только с 4 Гб оперативной памяти.)

Производительность

Потребляемая мощность

Размеры

Стоимость

Классы задач, на которые рассчитаны

Сравнительные характеристики производительности процессоров, потребляемой мощности и скоростей обмена данными представлены в таблицах

(Мфлопс - миллион операций с плавающей точкой в секунду)

Немалый вклад в общую производительность процессора и эффективность его работы вкладывает и структура межъядерных связей и организация подсистемы памяти, в частности кэш-памяти


Процессор CSX700

Архитектура процессора CSX700 была разработана для решения так называемой проблемы массо-габаритных показателей и потребляемой мощности (Size, Weight and Power (SWAP)), которая, как правило, является основной для встраиваемых высокопроизводительных приложений. Путем интегрирования процессоров, системных интерфейсов и встроенной памяти с коррекцией ошибок, CSX700 представляет собой достаточно экономичное, надежное и производительное решение, отвечающее требованиям современных приложений.

Архитектура процессора оптимизирована для работы с применением массового параллелизма данных и спроектирована с высокой степенью эффективности и надежности. Архитектура нацелена на интеллектуальную обработку сигналов и обработку изображений во временной и частотной областях.

Кристалл CSX700 содержит 192 высокопроизводительных процессорных ядра, встроенную буферную память размером 256 кбайт (два банка по 128 кбайт), кэш данных и кэш команд, ECC-защиту внутренней и внешней памяти, встроенный контроллер прямого доступа в память. Для обеспечения накристаль-ной и межкристальной сети используется технология ClearConnect NoC (рис. 11).

Процессор состоит из двух относительно независимых модулей MTAP (MultiThreaded Array Processor - многопотоковый процессорный массив), содержащих кэши инструкций, данных, блоки управления процессорными элементами, и набор из 96 вычислительных ядер (рис. 12).

Рис. 12. Структура MTAP-блока

Каждое ядро имеет двойной блок вычислений с плавающей точкой (сложение, умножение, деление, вычисление квадратного корня, поддерживаются числа одинарной и двойной точности), 6 кбайт высокопроизводительной оперативной памяти, 128-байтный регистровый файл. Поддерживается 64-битное виртуальное адресное пространство и 48-битное реальное.

Технические характеристики процессора:

тактовая частота ядер 250 MГц;

96 ГФлоп для данных двойной или одинарной точности;

поддерживает 75 ГФлоп при тесте перемножения матриц двойной точности (DGEMM);

производительность целочисленных операций 48 ШАОс;

рассеиваемая мощность 9 Вт;

пропускная способность внутренних шин памяти 192 Гбайт/с;

две внешние шины памяти 4 Гбайт/с;

скорость обмена данными между отдельными процессорами 4 Гбайт/с;

интерфейсы PCIe, 2·DDR2 DRAM (64 бита).

Разработанный для систем с низким энергопотреблением, данный процессор работает на относительно низкой тактовой частоте и имеет механизм управления частотой, который позволяет регулировать производительность приложений в условиях определенного энергопотребления и теплового окружения.

CSX700 поддерживается профессиональной средой разработки (SDK) на основе технологии Eclipse с визуальными средствами отладки приложений, базирующейся на оптимизированном компиляторе ANSI C с расширениями для параллельного программирования. В дополнение к стандартной библиотеке С идет набор оптимизированных библиотек с такими функциями, как БПФ, BLAS, LAPACK и др.

Современные процессоры Intel и AMD

Современный рынок процессоров делят два главных конкурента – Intel и AMD.

Процессоры от компании Intel, сегодня считаются самыми производительными, благодаря семейству Core i7 Extreme Edition. В зависимости от модели они могут иметь до 6 ядер одновременно, тактовую частоту до 3300 МГц и до 15 Мб кэш памяти L3. Самые популярные ядра в сегменте настольных процессоров создаются на основе Intel - Ivy Bridge и Sandy Bridge.

В процессорах компании Intel применяются фирменные технологии собственной разработки для повышения эффективности работы системы.

1. Hyper Threading - За счет этой технологии, каждое физическое ядро процессора способно обрабатывать по два потока вычислений одновременно, получается, что число логических ядер фактически удваивается.

2. Turbo Boost - Позволяет пользователю совершить автоматический разгон процессора, не превышая при этом максимально допустимый предел рабочей температуры ядер.

3. Intel QuickPath Interconnect (QPI) - Кольцевая шина QPI соединяет все компоненты процессора, за счет этого сводятся к минимуму все возможные задержки при обмене информацией.

4. Visualization Technology - Аппаратная поддержка решений виртуализации.

5. Intel Execute Disable Bit - Практически антивирусная программа, она обеспечивает аппаратную защиту от возможных вирусных атак, в основе которых лежит технология переполнения буфера.

6. Intel SpeedStep-Инструмент позволяющий изменять уровень напряжения и частоты в зависимости от создаваемой нагрузки на процессор.

Core i7 – на данный момент топовая линия компании

Core i5 – отличаются высокой производительностью

Core i3 – невысокая цена, высокая/средняя производительность

Самые быстрые процессоры фирмы AMD все же медленнее, чем самые быстрые процессоры Intel (данные на ноябрь 2010). Но благодаря своему хорошему соотношению цены и качества, процессоры AMD, в основном для настольных ПК, являются прекрасной альтернативой процессорам Intel.

Для процессоров Athlon II и Phenom II важным является не только тактовая частота, но и количество ядер процессора. Athlon II и Phenom II в зависимости от модели могут иметь два три или четыре ядра. Модель с шестью ядрами – только серия Highend Phenom II.

Большинство современных процессоров созданных компанией AMD по умолчанию поддерживают следующие технологии:

1. AMD Turbo CORE - Эта технология призвана автоматически регулировать производительность всех ядер процессора, за счет управляемого разгона (подобная технология у компании Intel имеет название TurboBoost).

2. AVX (Advanced Vector Extensions), ХОР и FMA4 - Инструмент, имеющий расширенный набор команд, специально созданных для работы с числами с плавающей точкой. Однозначно полезный инструментарий.

3. AES (Advanced Encryption Standard) - В программных приложениях использующих шифрование данных, повышает производительность.

4. AMD Visualization (AMD-V) - Эта технология виртуализации, помогает обеспечить разделение ресурсов одного компьютера между несколькими виртуальными машинами.

5. AMD PowcrNow! - Технология управления питанием. Она помогают пользователю добиться повышения производительности, за счет динамической активации и деактивации части процессора.

6. NX Bit - Уникальная антивирусная технология, помогающая предотвратить инфицирование персонального компьютера определенными видами вредоносных программ.

Использование в ГИС

Геоинформационные системы - многофункциональные средства анализа сведенных воедино табличных, текстовых и картографических данных, демографической, статистической, земельной, муниципальной, адресной и другой информации. Многоядерные процессоры необходимы для быстрой обработки различных видов информации, так как они значительно ускоряют и распределяют работу программ.

ВЫВОД

Переход к многоядерным процессорам становится основным направлением повышения производительности. На данный момент самым распространенным считается 4-х и 6-и ядерные процессоры. Каждое ядро воспринимается системой как отдельный, самостоятельный процессоров, со всем необходимым набором функций. Технология многоядерных процессоров, позволила распараллелить операции вычисления, вследствие чего повысился показатель быстродействия ПК.

http://www.intuit.ru/department/hardware/mcoreproc/15/

http://kit-e.ru/articles/build_in_systems/2010_2_92.php

http://softrew.ru/instructions/266-sovremennye-processory.html

http://it-notes.info/centralnyj-processor/

http://www.mediamarkt.ru/mp/article/AMD,847020.html

Преимущества многоядерных процессоров

Возможность распределять работу программ, например, основных задач приложений и фоновых задач операционной системы, по нескольким ядрам;

Увеличение скорости работы программ;

Процессы, требующие интенсивных вычислений, протекают намного быстрее;

Более эффективное использование требовательных к вычислительным ресурсам мультимедийных приложений (например, видеоредакторов);

Снижение энергопотребления;

Работа пользователя ПК становится более комфортной;