Пик программатор своими руками usb. Как программировать PIC микроконтроллеры или Простой JDM программатор. Эксперименты с микроконтроллерами

Представляет собой наиболее простую конструкцию для прошивки контроллеров семейства PIC. Неоспоримые преимущества - простота, компактность, питание без внешнего источника данной классической схемы программатора сделали её очень популярной среди радиолюбителей, тем более что схеме уже лет 5, и за это время она зарекомендовала себя как простой и надёжный инструмент работы с микроконтроллерами.

Принципиальная схема программатора для pic контроллеров:

Питание на саму схему не требуется, ведь для этого служит COM порт компьютера, через который и осуществляется управление прошивкой микроконтроллера. Для низковольтного режима программирования вполне достаточно 5в, но могут быть не доступны все опции для изменения (фьюзы). Разъем подключения COM-9 порта смонтировал прямо на печатную плату программатора для PIC - получилось очень удобно.

Можно воткнуть плату без лишних шнуров прямо в порт. опробован на различных компьютерах и при программировании МК серий 12F,16F и 18F, показал высокое качество прошивки. Предложенная схема позволяет программировать микроконтроллеры PIC12F509, PIC16F84A, PIC16F628. Например недавно с помощью предложенного программатора успешно был прошит микроконтроллер для .

Для программирования используется WinPic800 - одна из лучших программ для программирования PIC контроллеров. Программа позволяет выполнять операции для микроконтроллеров семейства PIC: чтения, записи, стирания, проверки FLASH и EEPROM памяти и установку битов конфигураций.

Микроконтроллеры PIC заслужили славу благодаря своей неприхотливости и качеству работы, а также универсальности в использовании. Но что может дать микроконтроллер без возможности записывать новые программы на него? Без программатора это не больше чем кусочек удивительного по форме исполнения железа. Сам программатор PIC может быть двух типов: или самодельный, или заводской.

Различие заводского и самодельного программаторов

В первую очередь отличаются они надежностью и функциональностью, которую предоставляют владельцам микроконтроллеров. Так, если делается самодельный, то он, как правило, рассчитывается только на одну модель PIC-микроконтроллера, тогда как программатор от Microchip предоставляет возможность работы с различными типами, модификациями и моделями микроконтроллеров.

Заводской программатор от Microchip

Самый известный и популярный - простой программатор PIC, который использует множество людей и известный для многих под названием PICkit 2. Его популярность объясняется явными и неявными достоинствами. Явные достоинства, которые имеет этот USB программатор для PIC, можно перечислять долго, среди них: относительно небольшая стоимость, простота эксплуатации и универсальность относительно всего семейства микроконтроллеров, начиная от 6-выводных и заканчивая 20-выводными.

Использование программатора от Microchip

По его использованию можно найти много обучающих уроков, которые помогут разобраться с всевозможными аспектами использования. Если рассматривать не только программатор PIC, купленный «с рук», а приобретенный у официального представителя, то можно ещё подметить качество поддержки, предоставляемое вместе с ним. Так, в дополнение идут обучающие материалы по использованию, лицензионные среды разработки, а также демонстрационная плата, которая предназначена для работы с маловыводными микроконтроллерами. Кроме всего этого, присутствуют утилиты, которые сделают работу с механизмом более приятной, помогут отслеживать процесс программирования и отладки работы микроконтроллера. Также поставляется утилита для стимулирования работы МК.

Другие программаторы

Кроме официального программатора, есть и другие, которые позволяют программировать микроконтроллеры. При их приобретении рассчитывать на дополнительное ПО не приходится, но тем, кому большего и не надо, этого хватает. Довольно явным минусом можно назвать то, что для некоторых программаторов сложно бывает найти необходимое обеспечение, чтобы иметь возможность качественно работать.

Программаторы, собранные вручную

А теперь, пожалуй, самое интересное - программаторы PIC-контроллеров, которые собираются вручную. Этим вариантом пользуются те, у кого нет денег или просто нет желания их тратить. В случае покупки у официального представителя можно рассчитывать на то, что если устройство окажется некачественным, то его можно вернуть и получить новое взамен. А при покупке «с рук» или с помощью досок объявлений в случае некачественной пайки или механических повреждений рассчитывать на возмещение расходов и получение качественного программатора не приходится. А теперь перейдём к собранной вручную электронике.

Программатор PIC может быть рассчитан на определённые модели или быть универсальным (для всех или почти всех моделей). Собираются они на микросхемах, которые смогут преобразовать сигналы с порта RS-232 в сигнал, который позволит программировать МК. Нужно помнить, что, когда собираешь данную кем-то конструкцию, программатор PIC, схема и результат должны подходить один к одному. Даже небольшие отклонения нежелательны. Это замечание относится к новичкам в электронике, люди с опытом и практикой могут улучшить практически любую схему, если есть куда улучшать.

Отдельно стоит молвить слово и про программный комплекс, которым обеспечивают USB-программатор для PIC, своими рукамисобранный. Дело в том, что собрать сам программатор по одной из множества схем, представленных в мировой сети, - мало. Необходимо ещё и программное обеспечение, которое позволит компьютеру с его помощью прошить микроконтроллер. В качестве такового довольно часто используются Icprog, WinPic800 и много других программ. Если сам автор схемы программатора не указал ПО, с которым его творение сможет выполнять свою работу, то придется методом перебора узнавать самому. Это же относится и к тем, кто собирает свои собственные схемы. Можно и самому написать программу для МК, но это уже настоящий высший пилотаж.

Универсальные программаторы, которые подойдут не только к РІС

Если человек увлекается программированием микроконтроллеров, то вряд ли он постоянно будет пользоваться только одним типом. Для тех, кто не желает покупать отдельно программаторы для различных типов микроконтроллеров, от различных производителей, были разработаны универсальные устройства, которые смогут запрограммировать МК нескольких компаний. Так как компаний, выпускающих их, довольно много, то стоит избрать пару и рассказать про программаторы для них. Выбор пал на гигантов рынка микроконтроллеров: PIC и AVR.

Универсальный программатор PIC и AVR - это аппаратура, особенность которой заключается в её универсальности и возможности изменять работу благодаря программе, не внося изменений в аппаратную составляющую. Благодаря этому свойству такие приборы легко работают с МК, которые были выпущены в продажу уже после выхода программатора. Учитывая, что значительным образом архитектура в ближайшее время меняться не будет, они будут пригодны к использованию ещё длительное время. К дополнительным приятным свойствам заводских программаторов стоит отнести:

  1. Значительные аппаратные ограничения по количеству программируемых микросхем, что позволит программировать не одну, а сразу несколько единиц электроники.
  2. Возможность программирования микроконтроллеров и схем, в основе которых лежат различные технологии (NVRAM, NAND Flash и другие).
  3. Относительно небольшое время программирования. В зависимости от модели программатора и сложности программируемого кода может понадобиться от 20 до 400 секунд.

Особенности практического использования

Отдельно стоит затронуть тему практического использования. Как правило, программаторы подключаются к портам USB, но есть и такие вариации, что работают с помощью тех же проводов, что и винчестер. И для их использования придется снимать крышку компьютера, перебирать провода, да и сам процесс подключения не очень-то и удобный. Но второй тип является более универсальным и мощным, благодаря ему скорость прошивки больше, нежели при подключении через USB. Использование второго варианта не всегда представляется таким удобным и комфортным решением, как с USB, ведь до его использования необходимо проделать ряд операций: достать корпус, открыть его, найти необходимый провод. Про возможные проблемы от перегревания или скачков напряжения при работе с заводскими моделями можно не волноваться, так как у них, как правило, есть специальная защита.

Работа с микроконтроллерами

Что же необходимо для работы всех программаторов с микроконтроллерами? Дело в том, что, хотя сами программаторы и являются самостоятельными схемами, они передают сигналы компьютера в определённой последовательности. И задача относительно того, как компьютеру объяснить, что именно необходимо послать, решается программным обеспечением для программатора.

В свободном доступе находится довольно много различных программ, которые нацелены на работу с программаторами, как самодельными, так и заводскими. Но если он изготавливается малоизвестным предприятием, был сделан по схеме другого любителя электроники или самим человеком, читающим эти строки, то программного обеспечения можно и не найти. В таком случае можно использовать перебор всех доступных утилит для программирования, и если ни одна не подошла (при уверенности, что программатор качественно работает), то необходимо или взять/сделать другой программатор PIC, или написать собственную программу, что является весьма высоким пилотажем.

Возможные проблемы

Увы, даже самая идеальная техника не лишена возможных проблем, которые нет-нет, да и возникнут. Для улучшенного понимания необходимо составить список. Часть из этих проблем можно исправить вручную при детальном осмотре программатора, часть - только проверить при наличии необходимой проверочной аппаратуры. В таком случае, если программатор PIC-микроконтроллеров заводской, то вряд ли починить представляется возможным. Хотя можно попробовать найти возможные причины сбоев:

  1. Некачественная пайка элементов программатора.
  2. Отсутствие драйверов для работы с устройством.
  3. Повреждения внутри программатора или проводов внутри компьютера/USB.

Эксперименты с микроконтроллерами

Итак, всё есть. Как же начать работу с техникой, как начать прошивать микроконтроллер программатором?

  1. Подключить внешнее питание, присоединить всю аппаратуру.
  2. Первоначально необходима среда, с помощью которой всё будет делаться.
  3. Создать необходимый проект, выбрать конфигурацию микроконтроллера.
  4. Подготовить файл, в котором находится весь необходимый код.
  5. Подключиться к программатору.
  6. Когда всё готово, можно уже прошивать микроконтроллер.

Выше была написана только общая схема, которая позволяет понять, как происходит процесс. Для отдельных сред разработки она может незначительно отличаться, а более детальную информацию о них можно найти в инструкции.

Хочется отдельно написать обращение к тем, кто только начинает пользоваться программаторами. Помните, что, какими бы элементарными ни казались некоторые шаги, всегда необходимо их придерживаться, чтобы техника нормально и адекватно могла работать и выполнять поставленные вами задачи. Успехов в электронике!

Довольно большую популярность в интернете набирают схемы с использованием микроконтроллеров. Микроконтроллер – это такая специальная микросхема, которая, по сути своей, является маленьким компьютером, со своими портами ввода-вывода, памятью. Благодаря микроконтроллером можно создавать весьма функциональные схемы с минимумом пассивных компонентов, например, электронные часы, плееры, различные светодиодные эффекты, устройства автоматизации.

Для того, чтобы микросхема начала исполнять какие-либо функции, нужно её прошить, т.е. загрузить в её память код прошивки. Сделать это можно с помощью специального устройства, называемого программатором. Программатор связывает компьютер, на котором находится файл прошивки с прошиваемым микроконтроллером. Стоит упомянуть, что существуют микроконтроллеры семейства AVR, например такие, как Atmega8, Attiny13, и серии pic, например PIC12F675, PIC16F676. Pic-серия принадлежит компании Microchip, а AVR компании Atmel, поэтому способы прошивки pic и AVR отличаются. В этой статье рассмотрим процесс создания программатора Extra-pic, с помощью которого можно прошить микроконтроллер серии pic.
К достоинствам именно этого программатора можно отнести простоту его схемы, надёжность работы, универсальность, ведь поддерживает он все распространённые микроконтроллеры. На компьютере поддерживается также самыми распространёнными программами для прошивки, такими как Ic-prog, WinPic800, PonyProg, PICPgm.

Схема программатора


Она содержит в себе две микросхемы, импортную MAX232 и отечественную КР1533ЛА3, которую можно заменить на КР155ЛА3. Два транзистора, КТ502, который можно заменить на КТ345, КТ3107 или любой другой маломощный PNP транзистор. КТ3102 также можно менять, например, на BC457, КТ315. Зелёный светодиод служит индикатором наличия питания, красный загорается во время процесса прошивки микроконтроллера. Диод 1N4007 служит для защиты схемы от подачи напряжения неправильной полярности.

Материалы


Список необходимых для сборки программатора деталей:
  • Стабилизатор 78L05 – 2 шт.
  • Стабилизатор 78L12 – 1 шт.
  • Светодиод на 3 в. зелёный – 1 шт.
  • Светодиод на 3 в. красный – 1 шт.
  • Диод 1N4007 – 1 шт.
  • Диод 1N4148 – 2 шт.
  • Резистор 0,125 Вт 4,7 кОм – 2 шт.
  • Резистор 0,125 Вт 1 кОм – 6 шт.
  • Конденсатор 10 мкФ 16В – 4 шт.
  • Конденсатор 220 мкФ 25В – 1 шт.
  • Конденсатор 100 нФ – 3 шт.
  • Транзистор КТ3102 – 1 шт.
  • Транзистор КТ502 – 1 шт.
  • Микросхема MAX232 – 1 шт.
  • Микросхема КР1533ЛА3 – 1 шт.
  • Разъём питания – 1 шт
  • Разъём COM порта «мама» - 1 шт.
  • Панелька DIP40 – 1 шт.
  • Панелька DIP8 – 2 шт.
  • Панелька DIP14 – 1 шт.
  • Панелька DIP16 – 1 шт.
  • Панелька DIP18 – 1 шт.
  • Панелька DIP28 – 1 шт.
Кроме того, необходим паяльник и умение им пользоваться.

Изготовление печатной платы

Программатор собирается на печатной плате размерами 100х70 мм. Печатная плата выполняется методом ЛУТ, файл к статье прилагается. Отзеркаливать изображение перед печатью не нужно.


Скачать плату:

(cкачиваний: 639)

Сборка программатора

Первым делом на печатную плату впаиваются перемычки, затем резисторы, диоды. В последнюю очередь нужно впаять панельки и разъёмы питания и СОМ порта.



Т.к. на печатное плате много панелек под прошиваемые микроконтроллеры, а используются у них не все выводы, можно пойти на такую хитрость и вынуть неиспользуемые контакты из панелек. При этом меньше времени уйдёт на пайку и вставить микросхему в такую панельку будет уже куда проще.


Разъём СОМ порта (он называется DB-9) имеет два штырька, которые должны «втыкаться» в плату. Чтобы не сверлить под них лишние отверстия на плате, можно открутить два винтика под бокам разъёма, при этом штырьки отпадут, как и металлическая окантовка разъёма.


После впайки всех деталей плату нужно отмыть от флюса, прозвонить соседние контакты, нет ли замыканий. Убедиться в том, что в панельках нет микросхем (вынуть нужно в том числе и МАХ232, и КР1533ЛА3), подключить питание. Проверить, присутствует ли напряжение 5 вольт на выходах стабилизаторов. Если всё хорошо, можно устанавливать микросхемы МАХ232 и КР1533ЛА3, программатор готов к работе. Напряжение питания схемы 15-24 вольта.



Плата программатора содержит 4 панельки для микроконтроллеров и одну для прошивки микросхем памяти. Перед установкой на плату прошиваемого микроконтроллера нужно посмотреть, совпадает ли его распиновка с распиновкой на плате программатора. Программатор можно подключать к СОМ-порту компьютера напрямую, либо же через удлинительный кабель. Успешной сборки!

Однажды я решил собрать несложный LC-метр на pic16f628a и естественно его надо было чем-то прошить. Раньше у меня был компьютер с физическим com-портом, но сейчас в моём распоряжении только usb и плата pci-lpt-2com. Для начала я собрал простой JDM программатор, но как оказалось ни с платой pci-lpt-com, ни с usb-com переходником он работать не захотел (низкое напряжение сигналов RS-232). Тогда я бросился искать usb программаторы pic, но там, как оказалось всё ограничено использованием дорогих pic18f2550/4550, которых у меня естественно не было, да и жалко такие дорогие МК использовать, если на пиках я очень редко что-то делаю (предпочитаю авр-ы, их прошить проблем не составляет, они намного дешевле, да и программы писать мне кажется, на них проще). Долго копавшись на просторах интернета в одной из множества статей про программатор EXTRA-PIC и его всевозможные варианты один из авторов написал, что extrapic работает с любыми com-портами и даже переходником usb-com.

В схеме данного программатора используется преобразователь логических уровней max232.

Я подумал, если использовать usb адаптер, то будет очень глупо делать два раза преобразование уровней usb в usart TTL, TTL в RS232, RS232 обратно в TTL, если можно просто взять TTL сигналы порта RS232 из микросхемы usb-usart преобразователя.

Так и сделал. Взял микросхему CH340G (в которой есть все 8 сигналов com-порта) и подключил её вместо max232. И вот что получилось.

В моей схеме есть перемычка jp1, которой нет в экстрапике, её я поставил потому что, не знал, как себя поведёт вывод TX на ТТЛ уровне, поэтому сделал возможность его инвертировать на оставшемся свободном элементе И-НЕ и не прогадал, как оказалось, напрямую на выводе TX логическая единица, и поэтому на выводе VPP при включении присутствует 12 вольт, а при программировании ничего не будет (хотя можно инвертировать TX программно).

После сборки платы пришло время испытаний. И тут настало главное разочарование. Программатор определился сразу (программой ic-prog) и заработал, но очень медленно! В принципе - ожидаемо. Тогда в настройках com порта я выставил максимальную скорость (128 килобод) начал испытания всех найденных программ для JDM. В итоге, самой быстрой оказалась PicPgm. Мой pic16f628a прошивался полностью (hex, eeprom и config) плюс верификация где-то 4-6 минут (причём чтение идёт медленнее записи). IcProg тоже работает, но медленнее. Ошибок про программировании не возникло. Также я попробовал прошить eeprom 24с08, результат тот же - всё шьёт, но очень медленно.

Выводы: программатор достаточно простой, в нём нет дорогостоящих деталей (CH340 - 0.3-0.5$ , к1533ла3 можно вообще найти среди радиохлама), работает на любом компьютере, ноутбуке (и даже можно использовать планшеты на windows 8/10). Минусы: он очень медленный. Также он требует внешнее питание для сигнала VPP. В итоге, как мне показалось, для нечастой прошивки пиков - это несложный для повторения и недорогой вариант для тех, у кого нет под рукой древнего компьютера с нужными портами.

Вот фото готового девайса:

Как поётся в песне "я его слепила из того, что было". Набор деталей самый разнообразный: и smd, и DIP.

Для тех, кто рискнёт повторить схему, в качестве usb-uart конвертера подойдёт почти любой (ft232, pl2303, cp2101 и др), вместо к1533ла3 подойдёт к555, думаю даже к155 серия или зарубежный аналог 74als00, возможно даже будет работать с логическими НЕ элементами типа к1533лн1. Прилагаю свою печатную плату, но разводка там под те элементы, что были в наличии, каждый может перерисовать под себя.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Микросхема CH340G 1 В блокнот
IC2 Микросхема К1533ЛА3 1 В блокнот
VR1 Линейный регулятор

LM7812

1 В блокнот
VR2 Линейный регулятор

LM7805

1 В блокнот
VT1 Биполярный транзистор

КТ502Е

1 В блокнот
VT2 Биполярный транзистор

КТ3102Е

1 В блокнот
VD1-VD3 Выпрямительный диод

1N4148

2 В блокнот
C1, C2, C5-C7 Конденсатор 100 нФ 5 В блокнот
C3, C4 Конденсатор 22 пФ 2 В блокнот
HL1-HL4 Светодиод Любой 4 В блокнот
R1, R3, R4 Резистор

1 кОм

3

1. ПРОГРАММАТОР ДЛЯ PIC-КОНТРОЛЛЕРОВ

Я надеюсь, что моя статья поможет некоторым радиолюбителям перешагнуть порог от цифровой техники к микроконтроллерам. В Интернете и радиолюбительских журналах много программаторов: от самых простых до очень накрученных. Мой не очень сложный, но надежный.

Первый вариант программатора предназначен для программирования 18-ти и 28-ми "пиновых" PIC контроллеров. В основу программатора положена схема из журнала Радио № 10 за 2007 год. Но подбор конденсатора С7, эксперименты с разными вариантами ICprog, PonyProg, WinPic и скоростями чтения-записи не дали желаемого результата: успешное программирование получалось через раз. И это продолжалось до тех пор, пока не сделал питание +5В программируемой микросхемы отдельно, а не после 12-ти вольтного стабилизатора. Получилась такая схема.

Опасаясь сбоев, печатку рисовал так, чтобы плата вставлялась непосредственно в Com-порт, что не очень просто из-за всевозможных «шнурков» и малого расстояния до корпуса. Получилась печатка неправильной формы, но вставляется в СОМ-порт нормально и программирует без ошибок.

Со временем сделал шнур-удлинитель длинной около 1 метра. Теперь программатор лежит рядом с монитором и подключен к COM порту. Работает нормально: многократно программировались микроконтроллеры PIC16F84A, PIC16F628A, PIC16F873A.

Обратите внимание: микросхема Мах и светодиоды установлены со стороны печатных проводников. Панельки - ZIF-28, одна из них служит для 18-ти выводных PIC. На панельках нанесены метки первых ножек и числа «18» и «28». В корпусе вилки-адаптера установлен трансформатор 220 на 15 вольт, 4 ватта. Включать в розетку нужно после установки микроконтроллера в панельку. Транзисторы n-p-n маломощные высокочастотные (300Мгц) в корпусе to-92.

Разъём XP временно не устанавливал, а потом оказалось, что он особо и не нужен. Пришлось как-то программировать впаянный МК, так я провода прямо в ZIF вставил и зафиксировал. Перепрограммирование прошло успешно.

Я работаю c программами ICprog и WinPic-800.

В программе IC-prog 1.05D следующие настройки программатора:

  • Программатор – JDM Programmer
  • Порт –Com1
  • Прямой доступ к портам.
  • Инверсия: ввода, вывода и тактирования (поставить галочки).

В WinPic-800 –v.3.64f всё идентично, только нужно еще поставить “птицу” в использовании MCLR.

В интернете можно свободно и бесплатно скачать эти программы. Но для облегчения жизни, я попробую приложить все необходимое. Просто вспомнил: сколько всяких “ненужностей” я сам накачал с интернета, и сколько времени на разборки всего этого потратил.

  • Печатная плата программатора
  • Программа WinPic-800 ( )
  • Программа IC-Prog ()
  • Статья по IC-Prog.

2. ПРОГРАММАТОР-2 ДЛЯ PIC-КОНТРОЛЛЕРОВ

Со временем появилась необходимость в программировании 14-ти и 40-ка "пиновых" пиков. Решил сделать программатор для всего среднего семейства PIC-ов. Схема та же, только добавились две панельки. Всё это разместилось в корпусе от бывшего мультиметра.

В печатную плату 13 февраля 2014 года внесено исправление: от 5-го контакта разъёма RS232 дорожка идет к минусу питания (а на прежней - к 6-ой ножке микросхемы МАХ). Новая печатка в "programer2-2".

Можно сэкономить одну КРЕН-ку. Т.е. подключать от одного 5-ти вольтного стабилизатора всю схему. VR3 и С9 не устанавливать, а поставить перемычку (на схеме указана пунктиром). Но я пока КРЕНку не выпаивал. Многократно программировал PIC16F676, 628А, 84А и 873А. Но еще не пробовал 877.

Некоторые конденсаторы установлены со стороны печатных проводников. КРЕНки располагаются в горизонтальном положении. Чтобы не прокладывать проводники, я установил С7 – 2шт и R12 – 3шт.

Очень важно: корпус разъёма RS232 должен быть соединен с минусом питания.

Блок питания (15 В) и программы используются те же, что и в первом варианте.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Схема 1
DD1 ИС RS-232 интерфейса

MAX232E

1 MAX232CPE В блокнот
VT1-VT4 Биполярный транзистор

2N3904

4 TO-92 В блокнот
VDS1 Диодный мост

DB157

1 В блокнот
VD1 Выпрямительный диод

1N4148

1 В блокнот
VR1, VR3 Линейный регулятор

L7805AB

1 В блокнот
VR2 Линейный регулятор

KA78R12C

1 В блокнот
С1 470 мкФ 35В 1 В блокнот
С2, С3, С5, С6 Электролитический конденсатор 10 мкФ 50В 4 В блокнот
С4, С8 Электролитический конденсатор 470 мкФ 16В 2 В блокнот
С7 Электролитический конденсатор 1 мкФ 25В 1 В блокнот
С11 Конденсатор 0.1 мФ 1 В блокнот
R1, R7 Резистор

10 кОм

2 В блокнот
R2 Резистор

470 Ом

1 В блокнот
R3, R5, R11 Резистор

4.7 кОм

3 В блокнот
R4, R10 Резистор

2 кОм

2 В блокнот
R6, R8, R9 Резистор

1 кОм

3 В блокнот
R12 Резистор

240 Ом

1 В блокнот
HL1 Светодиод 1 Красный В блокнот
HL2 Светодиод 1 Зеленый В блокнот
Схема 2
DD1 ИС RS-232 интерфейса

MAX232E

1 MAX232CPE В блокнот
VT1-VT4 Биполярный транзистор

2N3904

4 TO-92 В блокнот
VDS1 Диодный мост

DB157

1 В блокнот
VD1 Выпрямительный диод

1N4148

1 В блокнот
VR1, VR3 Линейный регулятор

L7805AB

2 В блокнот
VR2 Линейный регулятор

KA78R12C

1 В блокнот
C1, C2, C4, C5 Конденсатор 10мкФ 50В 4 В блокнот
C3 Электролитический конденсатор 470мкФ 35В 1 В блокнот
C6, C9 Электролитический конденсатор 470мкФ 16В 2 В блокнот
C7.1-C7.3 Конденсатор 0.1 мкФ 3