Что входит в состав вычислительной техники. Основные характеристики вычислительной техники. История развития средств вычислительной техники


Классификация средств вычислительной техники

1. Аппаратное обеспечение

Состав вычислительной системы называется конфигурацией. Аппаратные и программные средства вычислительной техники принято рассматривать отдельно. Соответственно, отдельно рассматривают аппаратную конфигурацию вычислительных систем и их программную конфигурацию. Такой принцип разделения имеет для информатики особое значение, поскольку очень часто решение одних и тех же задач может обеспечиваться как аппаратными, так и программными средствами. Критериями выбора аппаратного или программного решения являются производительность и эффективность. Обычно принято считать, что аппаратные решения в среднем оказываются дороже, зато реализация программных решений требует более высокой квалификации персонала.

К аппаратному обеспечению вычислительных систем относятся устройства и приборы, образующие аппаратную конфигурацию. Современные компьютеры и вычислительные комплексы имеют блочно-модульную конструкцию - аппаратную конфигурацию, необходимую для исполнения конкретных видов работ, которую можно собирать из готовых узлов и блоков.

Основными аппаратными компонентами вычислительной системы являются: память, центральный процессор и периферийные устройства, которые соединены между собой системной магистралью (Рис.1.) Основная память предназначена для запоминания программ и данных в двоичном виде и организована в виде упорядоченного массива ячеек, каждая из которых имеет уникальный цифровой адрес. Как правило, размер ячейки составляет 1 байт. Типовые операции над основной памятью: считывание и запись содержимого ячейки с определенным адресом.

2. Центральный процессор

Центральный процессор - это центральное устройство компьютера, которое выполняет операции по обработке данных и управляет периферийными устройствами компьютера. В состав центрального процессора входят:

Устройство управления - организует процесс выполнения программ и координирует взаимодействие всех устройств вычислительной системы во время ее работы;

Арифметико-логическое устройство - выполняет арифметические и логические операции над данными: сложение, вычитание, умножение, деление, сравнение и др.;

Запоминающее устройство - представляет собой внутреннюю память процессора, которая состоит из регистров, при использовании которых, процессор выполняет расчеты и сохраняет промежуточные результаты; для ускорения работы с оперативной памятью используется кэш-память, в которую с опережением подкачиваются команды и данные из оперативной памяти, необходимые процессору для последующих операций;

Генератор тактовой частоты - генерирует электрические импульсы, синхронизирующие работу всех узлов компьютера.

Центральный процессор выполняет различные операции с данными при помощи специализированных ячеек для хранения ключевых переменных и временных результатов - внутренних регистров. Регистры подразделяются на два вида (рис.2.):

Регистры общего назначения - используются для временного хранения ключевых локальных переменных и промежуточных результатов вычислений, включают регистры данных и регистры-указатели; основная функция состоит в обеспечении быстрого доступа к часто используемым данным (обычно без обращений к памяти).

Специализированные регистры - используются для контроля работы процессора, наиболее важные из них: регистр команд, указатель стека, регистр флагов и регистр, содержащий информацию о состоянии программы.

Регистры данных программист может использовать по своему усмотрению для временного хранения любых объектов (данных или адресов) и выполнения над ними требуемых операций. Индексные регистры так же, как и регистры данных, могут использоваться произвольным образом; их основное назначение - хранить индексы или смещения данных и команд от начала базового адреса (при выборке операндов из памяти). Адрес базы при этом может находиться в базовых регистрах.

Сегментные регистры являются важнейшим элементом архитектуры процессора, обеспечивая адресацию 20-разрядного адресного пространства с помощью 16-разрядных операндов. Основные сегментные регистры: CS - регистр сегмента кода; DS - регистр сегмента данных; SS - регистр сегмента стека, ES - дополнительный сегментальный регистр. Обращение к памяти осуществляется посредством сегментов - логических образований, накладываемых на любые участки физического адресного пространства. Начальный адрес сегмента, деленный на 16 (без младшей шестнадцатеричной цифры) заносится в один из сегментных регистров; после чего предоставляется доступ к участку памяти, начинающегося с заданного сегментного адреса.

Адрес любой ячейки памяти состоит из двух слов, одно из которых определяет расположение в памяти соответствующего сегмента, а другое - смещение в пределах этого сегмента. Размер сегмента определяется объемом содержащихся в нем данных, но никогда не может превышать величину 64 Кбайт, что определяется максимально возможной величиной смещения. Сегментный адрес сегмента команд хранится в регистре CS, а смещение к адресуемому байту - в регистре указателе команд IP.

Рис.2. Регистры 32-х разрядного процессора

После загрузки программы в IP заносится смещение первой команды программы. Процессор, считав ее из памяти, увеличивает содержимое IP точно на длину этой команды (команды процессоров Intel могут иметь длину от 1 до 6 байт), в результате чего IP указывает на вторую команду программы. Выполнив первую команду, процессор считывает из памяти вторую, опять увеличивая значение IP. В результате в IP всегда находится смещение очередной команды - команды, следующей за выполняемой. Описанный алгоритм нарушается только при выполнении команд переходов, вызовов подпрограмм и обслуживания прерываний.

Сегментный адрес сегмента данных хранится в регистре DS, смещение может находиться в одном из регистров общего назначения. Дополнительный сегментный регистр ES используется для обращения к полям данных, не входящим в программу, например к видеобуферу или системным ячейкам. Однако при необходимости его можно настроить и на один из сегментов программы. Например, если программа работает с большим объемом данных, для них можно предусмотреть два сегмента и обращаться к одному из них через регистр DS, а к другому - через регистр ES.

Регистр-указатель стека SP используется как указатель вершины стека. Стеком называют область программы для временного хранения произвольных данных. Удобство стека заключается в том, что его область используется многократно, причем сохранение в стеке данных и выборка их оттуда выполняется с помощью команд push и pop без указания имен. Стек традиционно используется для сохранения содержимого регистров, используемых программой, перед вызовом подпрограммы, которая, в свою очередь, будет использовать регистры процессора в своих личных целях. Исходное содержимое регистров извлекается из стека после возврата из подпрограммы. Другой распространенный прием - передача подпрограмме требуемых ею параметров через стек. Подпрограмма, зная, в каком порядке помещены в стек параметры, может забрать их оттуда и использовать при своем выполнении.

Отличительной особенностью стека является своеобразный порядок выборки содержащихся в нем данных: в любой момент времени в стеке доступен только верхний элемент, то есть элемент, загруженный в стек последним. Выгрузка из стека верхнего элемента делает доступным следующий элемент. Элементы стека располагаются в области памяти, отведенной под стек, начиная со дна стека (с его максимального адреса) по последовательно уменьшающимся адресам. Адрес верхнего, доступного элемента хранится в регистре-указателе стека SP.

Специальные регистры доступны только в привилегированном режиме и используются операционной системой. Они контролируют различные блоки кэш-памяти, основную память, устройства ввода-вывода и другие устройства вычислительной системы.

Существует один регистр, который доступен как в привилегированном, так и в пользовательском режимах. Это регистр PSW (Program State Word - слово состояния программы), который называют флаговым. Флаговый регистр содержит различные биты, необходимые центральному процессору, самые важные - коды условий, которые используются при сравнениях и условных переходах Они устанавливаются в каждом цикле арифметико-логического устройства процессора и отражают состояние результата предыдущей операции. Содержимое флагового регистра зависит от типа вычислительной системы и может включать дополнительные поля, которые указывают: режим машины (например, пользовательский или привилегированный); бит трассировки (который используется для отладки); уровень приоритета процессора; статус разрешения прерываний. Флаговый регистр обычно читается в пользовательском режиме, но некоторые поля могут записываться только в привилегированном режиме (например, бит, который указывает режим).

Регистр указатель команд содержит адрес следующей, стоящей в очереди на выполнение команды. После выбора команды из памяти регистр команд корректируется, и указатель переходит к следующей команде. Указатель команд следит за ходом выполнения программы, указывая в каждый момент относительный адрес команды, следующей за исполняемой. Регистр программно недоступен; наращивание адреса в нем выполняет микропроцессор, учитывая при этом длину текущей команды. Команды переходов, прерываний, вызова подпрограмм и возврата из них изменяют содержимое указателя, осуществляя тем самым переходы в требуемые точки программы.

Регистр аккумулятор используется в подавляющем числе команд. Часто применяемые команды, использующие данный регистр, имеют укороченный формат.

Для обработки информации обычно организовывается передача данных из ячеек памяти в регистры общего назначения, выполнение операции центральным процессором и передача результатов в основную память. Программы хранятся в виде последовательности машинных команд, которые должен выполнять центральный процессор. Каждая команда состоит из поля операции и полей операндов - данных, над которыми выполняется данная операция. Набор машинных команд называется машинным языком. Выполнение программ осуществляется следующим образом. Машинная команда, на которую указывает программный счетчик, считывается из памяти и копируется в регистр команд, где она декодируется, после чего исполняется. После ее выполнения программный счетчик указывает на следующую команду и т.д. Эти действия называются машинным циклом.

Большинство центральных процессоров имеют два режима работы: режим ядра и пользовательский, который задается битом слова состояния процессора (флагового регистра). Если процессор запущен в режиме ядра, он может выполнять все команды из набора инструкций и использовать все возможности аппаратуры. Операционная система работает в режиме ядра и предоставляет доступ ко всему оборудованию. Программы пользователей работают в пользовательском режиме, который разрешает выполнение множества команд, но делает доступным только часть аппаратных средств.

Для связи с операционной системой пользовательская программа должна сформировать системный вызов, который обеспечивает переход в режим ядра и активизирует функции операционной системы. Команда trap (эмулированное прерывание) переключает режим работы процессора из пользовательского в режим ядра и передает управление операционной системе. После завершения работы управление возвращается к пользовательской программе, к команде, следующей за системным вызовом.

В компьютерах, помимо инструкций для выполнения системных вызовов имеются прерывания, которые вызываются аппаратно для предупреждения об исключительных ситуациях, например, попытка деления на ноль или переполнение при операциях с плавающей точкой. Во всех подобных случаях управление переходит к операционной систем, которая должная решить, что делать дальше. Иногда нужно завершить программу с сообщением об ошибке, иногда можно проигнорировать (например, при потере значимости числа его можно принять равным нулю) или передать управление самой программе для обработки некоторых видов условий.

По способу расположения устройств относительно центрального процессора различают внутренние и внешние устройства. Внешними, как правило, являются большинство устройств ввода-вывода данных (их также называют периферийными устройствами) и некоторые устройства, предназначенные для длительного хранения данных.

Согласование между отдельными узлами и блоками выполняют с помощью переходных аппаратно-логических устройств, называемых аппаратными интерфейсами. Стандарты на аппаратные интерфейсы в вычислительной технике называют протоколами - совокупностью технических условий, которые должны быть обеспечены разработчиками устройств для успешного согласования их работы с другими устройствами.

Многочисленные интерфейсы, присутствующие в архитектуре любой вычислительной системы, можно условно разделить на две большие группы: последовательные и параллельные. Через последовательный интерфейс данные передаются последовательно, бит за битом, а через параллельный - одновременно группами битов. Количество битов, участвующих в одной посылке, определяется разрядностью интерфейса, например, восьмиразрядные параллельные интерфейсы передают один байт (8 бит) за один цикл.

Параллельные интерфейсы обычно имеют более сложное устройство, чем последовательные, но обеспечивают более высокую производительность. Их применяют там, где важна скорость передачи данных: для подключения печатающих устройств, устройств ввода графической информации, устройств записи данных на внешний носитель и т.п. Производительность параллельных интерфейсов измеряют байтами в секунду (байт/с; Кбайт/с; Мбайт/с).

Устройство последовательных интерфейсов проще; как правило, для них не надо синхронизировать работу передающего и принимающего устройства (поэтому их часто называют асинхронными интерфейсами), но пропускная способность их меньше и коэффициент полезного действия ниже. Поскольку обмен данными через последовательные устройства производится не байтами, а битами, их производительность измеряют битами в секунду (бит/с, Кбит/с, Мбит/с). Несмотря на кажущуюся простоту перевода единиц измерения скорости последовательной передачи в единицы измерения скорости параллельной передачи данных путем механического деления на 8, такой пересчет не выполняют, поскольку он не корректен из-за наличия служебных данных. В крайнем случае, с поправкой на служебные данные, иногда скорость последовательных устройств выражают в знаках в секунду или в символах в секунду (с/с), но эта величина имеет не технический, а справочный, потребительский характер.

Последовательные интерфейсы применяют для подключения медленных устройств (простейших устройств печати низкого качества: устройств ввода и вывода знаковой и сигнальной информации, контрольных датчиков, малопроизводительных устройств связи и т.п.), а также в тех случаях, когда нет существенных ограничений по продолжительности обмена данными (цифровые фотокамеры).

Второй основной составляющей компьютера является память. Система памяти конструируется в виде иерархии слоев (рис.3.). Верхний слой состоит из внутренних регистров центрального процессора. Внутренние регистры предоставляют возможность для хранения 32 х 32 бит на 32-разрядном процессоре и 64 х 64 бит на 64-разрядном процессоре, что составляет меньше одного килобайта в обоих случаях. Программы сами могут управлять регистрами (то есть решать, что в них хранить) без вмешательства аппаратуры.

Рис.3. Типичная иерархическая структура памяти

В следующем слое находится кэш-память, в основном контролируемая оборудованием. Оперативная память разделена на кэш-строки, обычно по 64 байт, с адресацией от 0 до 63 в нулевой строке, от 64 до 127 в первой строке и т.д. Наиболее часто используемые строки кэша хранятся в высокоскоростной кэш-памяти, расположенной внутри центрального процессора или очень близко к нему. Когда программа должна прочитать слово из памяти, кэш-микросхема проверяет, есть ли нужная строка в кэше. Если это так, то происходит результативное обращение к кэш-памяти, запрос удовлетворяется целиком из кэша и запрос к памяти на шину не выставляется. Удачное обращение к кэшу, как правило, по времени занимает около двух тактов, а неудачное приводит к обращению к памяти с существенной потерей времени. Кэш-память ограничена в размере, что обусловлено ее высокой стоимостью. В некоторых машинах есть два или даже три уровня кэша, причем каждый последующий медленнее и больше предыдущего.

Далее следует оперативная память (ОЗУ - оперативное запоминающее устройство, англ. RAM, Random Access Memory - память с произвольным доступом). Это главная рабочая область запоминающего устройства вычислительной системы. Все запросы центрального процессора, которые не могут быть выполнены кэш-памятью, поступают для обработки в основную память. При работе нескольких программ на компьютере желательно сложные программы помещать в оперативную память. Защита программ друг от друга и их перемещение в памяти реализуется посредством оборудования компьютера двумя специализированными регистрами: базовым регистром и предельным регистром.

В простейшем случае (рис.4.а), когда программа начинает работать, в базовый регистр загружается адрес начала исполняемого модуля программы, а предельный регистр говорит о том, сколько занимает исполняемый модуль программы вместе с данными. При выборке команды из памяти аппаратура проверяет счетчик команд, и если он меньше, чем предельный регистр, то добавляет к нему значение базового регистра, а сумму передает памяти. Когда программа хочет прочитать слово данных (например, из адреса 10000), аппаратура автоматически добавляет к этому адресу содержимое базового регистра (например, 50000) и передает сумму (60000) памяти. Базовый регистр дает возможность программе ссылаться на любую часть памяти, следующую за хранящимся в нем адресом. Кроме того, предельный регистр запрещает программе обращение к любой части памяти после программы. Таким образом, с помощью этой схемы решаются обе задачи: защиты и перемещения программ.

В результате проверки и преобразования данных, адрес, сформированный программой и называемый виртуальным адресом, переводится в адрес, используемый памятью и называемый физическим адресом. Устройство, которое выполняет проверку и преобразование, называется устройством управления памятью или диспетчером памяти (MMU, Memory Management Unit). Диспетчер памяти располагается или в схеме процессора, или близко к ней, но логически находится между процессором и памятью.

Более сложный диспетчер памяти состоит из двух пар базовых и предельных регистров. Одна пара предназначена для текста программы, другая пара - для данных. Командный регистр и все ссылки на текст программы работают с первой парой регистров, ссылки на данные используют вторую пару регистров. Благодаря такому механизму появляется возможность делить одну программу между несколькими пользователями при хранении в ОЗУ только одной копии программы, что исключено в простой схеме. При работе программы №1 четыре регистра располагаются так, как показано на рис.4 (б) слева, при работе программы №2 - справа. Управление диспетчером памяти является функцией операционной системы.

Следующим в структуре памяти идет магнитный диск (жесткий диск). Дисковая память на два порядка дешевле ОЗУ в пересчете на бит и больше по величине, но доступ к данным, размещенным на диске, занимает примерно на три порядка больше времени. Причиной низкой скорости жесткого диска является тот факт, что диск представляет собой механическую конструкцию. Жесткий диск состоит из одной или нескольких металлических пластин, вращающихся со скоростью 5400, 7200 или 10800 оборотов в минуту (рис.5.). Информация записывается на пластины в виде концентрических окружностей. Головки чтения/записи в каждой заданной позиции могут прочитать кольцо на пластине, называемое дорожкой. Все вместе дорожки для заданной позиции вилки формируют цилиндр.

Каждая дорожка разделена на некоторое количество секторов, обычно по 512 байт на сектор. На современных дисках внешние цилиндры содержат большее количество секторов, чем внутренние. Перемещение головки от одного цилиндра к другому занимает около 1 мс, а перемещение к произвольному цилиндру требует от 5 до 10 мс, в зависимости от диска. Когда головка располагается над нужной дорожкой, нужно ждать, пока двигатель повернет диск так, чтобы под головкой стал требуемый сектор. Это занимает дополнительно от 5 до 10 мс, в зависимости от скорости вращения диска. Когда сектор находится под головкой, процесс чтения или записи происходит со скоростью от 5 Мбайт/с (для низкоскоростных дисков) до 160 Мбайт/с (для высокоскоростных дисков).

Последний слой занимает магнитная лента. Этот носитель часто использовался для создания резервных копий пространства жесткого диска или для хранения больших наборов данных. Для доступа к информации ленту помещали в устройство для чтения магнитных лент, затем ее перематывали до запрашиваемого блока с информацией. Весь процесс длился минуты. Описанная иерархия памяти типична, но в некоторых вариантах могут присутствовать не все уровни или другие их виды (например, оптический диск). В любом случае при движении по иерархии сверху вниз время произвольного доступа значительно увеличивается от устройства к устройству, и вместимость растет эквивалентно времени доступа.

Кроме описанных выше видов во многих компьютерах есть постоянная память с произвольным доступом (ПЗУ - постоянное запоминающее устройство, ROM, Read Only Memory - память только для чтения), которая не теряет свое содержимое при выключении питания вычислительной системы. ПЗУ программируется в процессе производства и после этого его содержимое нельзя изменить. На некоторых компьютерах в ПЗУ находятся программы начальной загрузки, используемые при запуске компьютера, и некоторые карты ввода-вывода для управления низкоуровневыми устройствами.

Электрически стираемое ПЗУ (EEPROM, Electrically Erasable ROM) и флэш-ОЗУ (flash RAM) также энергонезависимы, но в отличие от ПЗУ их содержимое можно стереть и переписать. Однако запись данных на них требует намного больше времени, чем запись в оперативную память. Поэтому они используются точно так же, как и ПЗУ.

Существует еще один вид памяти - CMOS-память, которая является энергозависимой и используется для хранения текущей даты и текущего времени. Память получает питание от аккумулятора, встроенного в компьютер, может содержать конфигурационные параметры (например, указание, с какого жесткого диска производить загрузку).

3. Устройства ввода-вывода

Другими устройствами, тесно взаимодействующими с операционной системой, являются устройства ввода-вывода, которые состоят из двух частей: контроллера и самого устройства. Контроллер представляет собой микросхему (набор микросхем) на вставляемой в разъем плате, которая принимает и выполняет команды операционной системы.

Например, контроллер принимает команду чтения определенного сектора с диска. Для выполнения команды контроллер преобразовывает линейный номер сектора диска в номер цилиндра, сектора и головки. Операция преобразования усложняется тем, что внешние цилиндры могут иметь больше секторов, чем внутренние. Затем контроллер определяет, над каким цилиндром находится в данный момент головка, и дает последовательность импульсов, чтобы переместить головку на необходимое количество цилиндров. После чего контроллер ждет, пока повернется диск, поместив требуемый сектор под головку. Затем последовательно выполняются процессы чтения и сохранения битов по мере поступления их с диска, процессы удаления заголовка и вычисления контрольной суммы. Далее контроллер собирает полученные биты в слова и сохраняет их в памяти. Для осуществления этой работы контроллеры содержат встроенные микропрограммы.

Само устройство ввода-вывода имеет простой интерфейс, который должен соответствовать единому стандарту IDE (IDE, Integrated Drive Electronics - встроенный интерфейс накопителей). Так как интерфейс устройства скрыт контроллером, то операционная система видит только интерфейс контроллера, который может отличаться от интерфейса устройства.

Так как контроллеры для разных устройств ввода-вывода отличаются друг от друга, то для управления ими требуется соответствующее программное обеспечение - драйверы. Поэтому каждый производитель контроллеров должен поставлять драйверы для поддерживаемых им операционных систем. Чтобы установить драйвер в операционную систему существует три способа:

Заново скомпоновать ядро вместе с новым драйвером и затем перезагрузить систему, так работает множество систем UNIX;

Создать запись во входящем в операционную систему файле о том, что требуется драйвер и перезагрузить систему, во время начальной загрузки операционная система найдет нужный драйвер и загрузит его; так работает операционная система Windows;

Принять новые драйверы и оперативно их установить средствами операционной система во время ее работы; способ используется съемными шинами USB и IEEE 1394, которые всегда нуждаются в динамически загружаемых драйверах.

Для связи с каждым контроллером существуют определенные регистры. Например, минимальный контроллер диска может иметь регистры для определения адреса на диске, адреса в памяти, номер сектора и направления операции (чтение или запись). Чтобы активизировать контроллер, драйвер получает команду от операционной системы, затем транслирует ее в величины, подходящие для записи в регистры устройства.

На некоторых компьютерах регистры устройств ввода-вывода отображаются в адресное пространство операционной системы, поэтому их можно читать или записывать как обычные слова в памяти. Адреса регистров помещаются в ОЗУ за пределами досягаемости программ пользователей, чтобы программы пользователей оградить от аппаратуры (например, с помощью базового и предельного регистров).

На других компьютерах регистры устройств располагаются в специальных портах ввода-вывода, и каждый регистр имеет свой адрес порта. На таких машинах в привилегированном режиме доступны команды IN и OUT, которые позволяют драйверам считывать и записывать регистры. Первая схема устраняет необходимость специальных команд ввода-вывода, но использует некоторое количество адресного пространства. Вторая схема не затрагивает адресное пространство, но требует наличие специальных команд. Обе схемы широко используются. Ввод и вывод данных осуществляется тремя способами.

1.Пользовательская программа выдает системный запрос, который ядро транслирует в вызов процедуры соответствующего драйвеpa. Затем драйвер начинает процесс ввода-вывода. В это время драйвер выполняет очень короткий программный цикл, постоянно опрашивая готовность устройства, с которым он работает (обычно есть некий бит, который указывает на то, что устройство все еще занято). По завершении операции ввода-вывода драйвер помещает данные туда, куда требуется, и возвращается в исходное состояние. Затем операционная система возвращает управление программе, осуществлявшей вызов. Этот метод называется ожиданием готовности или активным ожиданием и имеет один недостаток: процессор должен опрашивать устройство до тех пор, пока оно не завершит свою работу.

2.Драйвер запускает устройство и просит его выдать прерывание по окончании ввода-вывода. После этого драйвер возвращает данные, операционная система блокирует программу вызова, если это нужно, и начинает выполнять другие задания. Когда контроллер обнаруживает окончание передачи данных, он генерирует прерывание, чтобы сигнализировать о завершении операции. Механизм реализации ввода-вывода происходит следующим образом (рис.6.а):

Шаг 1: драйвер передает команду контроллеру, записывая информацию в регистры устройства; контроллер запускает устройство ввода-вывода.

Шаг 2: после окончания чтения или записи контроллер посылает сигнал микросхеме контроллера прерываний.

Шаг З: если контроллер прерываний готов к приему прерывания, то он подает сигнал на определенный контакт центрального процессора.

Шаг 4: контроллер прерываний выставляет номер устройства ввода-вывода на шину так, чтобы центральный процессор мог прочесть его и узнать, какое устройство завершило работу. При приеме центральным процессором прерывания, содержимое счетчика команд (PC) и слова состояния процессора (PSW) помещается в текущий стек, а процессор переключается в привилегированный режим работы (режим работы ядра операционной системы). Номер устройства ввода-вывода может использоваться как индекс части памяти, служащий для поиска адреса обработчика прерываний данного устройства. Эта часть памяти называется вектором прерываний. Когда обработчик прерываний (часть драйвера устройства, пославшего прерывание) начинает свою работу, он удаляет расположенные в стеке счетчик команд и слово состояния процессора, сохраняет их и запрашивает устройство, чтобы получить информацию о его состоянии. После того как обработка прерывания завершена, управление возвращается к работавшей до этого программе пользователя, к той команде, выполнение которой еще не было закончено (рис. 6 б).

3.Для ввода-вывода информации используется контроллер прямого доступа к памяти (DMA, Direct Memory Access), который управляет потоком битов между оперативной памятью и некоторыми контроллерами без постоянного вмешательства центрального процессора. Процессор вызывает микросхему DMA, говорит ей, сколько байтов нужно передать, сообщает адреса устройства и памяти, а также направление передачи данных и позволяет микросхеме действовать самой. По завершении работы DMA инициирует прерывание, которое обрабатывается соответствующим образом.

Прерывания могут происходить в неподходящие моменты, например, во время обработки другого прерывания. По этой причине центральный процессор обладает возможностью запрещать прерывания и разрешать их позже. Пока прерывания запрещены, все устройства, завершившие работу, продолжают посылать свои сигналы, но работа процессора не прерывается до тех пор, пока прерывания не будут разрешены. Если заканчивают работу сразу несколько устройств в то время, когда прерывания запрещены, контроллер прерываний решает, какое из них должно быть обработано первым, обычно основываясь на статических приоритетах, назначенных для каждого устройства.

Вычислительная система Pentium имеет восемь шин (шина кэша, локальная шина, шина памяти, PCI, SCSI, USB, IDE и ISA). Каждая шина имеет свою скорость передачи данных и свои функции. В операционной системе для управления компьютером и его конфигурации должны находиться сведения обо всех шинах.

Шина ISA (Industry Standard Architecture, промышленная стандартная архитектура) - впервые появилась на компьютерах IBM PC/AT, работает на частоте 8,33 МГц и может передавать два байта за такт с максимальной скоростью 16,67 Мбайт/с.; она включена в систему для обратной совместимости со старыми медленными платами ввода-вывода.

Шина PCI (Peripheral Component Interconnect, интерфейс периферийных устройств) - создана компанией Intel в качестве преемницы шины ISA, может работать на частоте 66 МГц и передавать по 8 байт за такт со скоростью 528 Мбайт/с. В настоящее время шины PCI используют большинство высокоскоростных устройств ввода-вывода, а так же компьютеры с процессорами, отличными от Intel, так как с ней совместимо много плат ввода-вывода.

Локальная шина в системе Pentium используется для передачи центральным процессором данных микросхеме PCI-моста, который обращается к памяти по выделенной шине памяти, часто работающей на частоте 100 МГц.

Шина кэша используются для подключения внешнего кэша, так как системы Pentium имеют кэш первого уровня (кэш L1), встроенный в процессор, и большой внешний кэш второго уровня (кэш L2).

Шина IDE служит для присоединения периферийных устройств: дисков и устройств для чтения компакт-дисков. Шина является потомком интерфейса контроллера диска на PC/AT, в настоящее время входит в стандартный комплект всех систем, основанных на процессорах Pentium.

Шина USB (Universal Serial Bus, универсальная последовательная шина) предназначена для присоединения к компьютеру медленных устройств ввода-вывода (клавиатуры, мыши). Она использует маленький четырехпроводной разъем, два провода которого поставляют электропитание к USB-устройствам.

Шина USB - это централизованная шина, по которой главное устройство каждую миллисекунду опрашивает устройства ввода-вывода, чтобы узнать, есть ли у них данные. Она может управлять загрузкой данных со скоростью 1,5 Мбайт/с. Все USB-устройства используют один драйвер, поэтому их можно присоединять к системе без ее перезагрузки.

Шина SCSI (Small Computer System Interface, системный интерфейс малых компьютеров) - высокопроизводительная шина, применяемая для быстрых дисков, сканеров и других устройств, нуждающихся в значительной пропускной способности. Ее производительность достигает 160 Мбайт/с. Шина SCSI используется в системах Macintosh, популярна в UNIX-системах и других системах на базе процессоров Intel.

Шина IEEE 1394 (FireWire) - является бит-последовательной шиной и поддерживает пакетную передачу данных со скоростью, достигающей 50 Мбайт/с. Это свойство позволяет подключать к компьютеру портативные цифровые видеокамеры и другие мультимедийные устройства. В отличие от шины USB шина IEEE 1394 не имеет центрального контроллера.

Операционная система должна уметь распознавать аппаратные составляющие и уметь их настраивать. Это требование привело компании Intel и Microsoft к разработке системы персонального компьютера, называемой plug and play («включи и работай»). До появления этой системы каждая плата ввода-вывода имела фиксированные адреса регистров ввода-вывода и уровень запроса прерывания. Например, клавиатура использовала прерывание 1 и адреса в диапазоне от 0x60 до 0x64; контроллер гибкого диска использовал прерывание 6 и адреса от 0x3F0 до 0x3F7; принтер пользовался прерыванием 7 и адресами от 0x378 до 0х37А.

Если пользователь покупал звуковую карту и модем, случалось что эти устройства случайно использовали одно и тоже прерывание. Возникал конфликт, поэтому устройства не могли работать вместе. Возможным решением было встроить набор DIP-переключателей (джамперов, jumper - перемычка) в каждую плату и настроить каждую плату таким образом, чтобы адреса портов и номера прерываний различных устройств не конфликтовали друг с другом.

Plug and play позволяет операционной системе автоматически собирать информацию об устройствах ввода-вывода, централизованно назначать уровни прерывания и адреса ввода-вывода, а затем сообщать каждой плате эту информацию. Такая система работает на компьютерах Pentium. Каждый компьютер с процессором Pentium содержит материнскую плату, на которой находится программа - система BIOS (Basic Input Output System - базовая система ввода-вывода). BIOS содержит программы ввода-вывода низкого уровня, включая процедуры: для чтения с клавиатуры, для вывода информации на экран, для ввода-вывода данных с диска и пр.

При начальной загрузке компьютера стартует система BIOS, которая проверяет количество установленной в системе оперативной памяти, подключение и корректность работы клавиатуры и других основных устройств. Далее BIOS проверяет шины ISA и PCI и все устройства, присоединенные к ним. Некоторые из этих устройств являются традиционными (созданными до выхода стандарта plug and play). Они имеют фиксированные уровни прерывания и адрес порта ввода-вывода (например, заданные с помощью переключателей или перемычек на плате ввода-вывода без возможности их изменения операционной системой). Эти устройства регистрируются, далее проходят регистрации устройства plug and play. Если присутствующие устройства отличаются от тех, что были во время последней загрузки, то производится конфигурирование новых устройств.

Затем BIOS определяет устройство, с которого будет происходить загрузка, по очереди пробуя каждое из списка, хранящегося в CMOS-памяти. Пользователь может изменить этот список, войдя в конфигурационную программу BIOS сразу после загрузки. Обычно сначала делается попытка загрузиться с гибкого диска. Если это не удается, пробуется компакт-диск. Если в компьютере отсутствуют и гибкий диск, и компакт-диск, система загружается с жесткого диска. С загрузочного устройства считывается в память и выполняется первый сектор. В этом секторе находится программа, проверяющая таблицу разделов в конце загрузочного сектора, чтобы определить, который из разделов является активным. Затем из того же раздела читается вторичный загрузчик. Он считывает из активного раздела операционную систему и запускает ее.

После этого операционная система опрашивает BIOS, чтобы получить информацию о конфигурации компьютера и проверяет наличие драйвера для каждого устройства. Если драйвер отсутствует, операционная система просит пользователя вставить гибкий диск или компакт-диск, содержащий драйвер (эти диски поставляются производителем устройства). Если же все драйверы на месте, операционная система загружает их в ядро. Затем она инициализирует таблицы драйверов, создает все необходимые фоновые процессы и запускает программу ввода пароля или графический интерфейс на каждом терминале.

5. История развития средств вычислительной техники

Все IBM-совместимые персональные компьютеры укомплектованы Intel-совместимыми процессорами. История развития микропроцессоров семейства Intel вкратце такова. Первый универсальный микропроцессор фирмы Intel появился в 1970 г. Он назывался Intel 4004, был четырехразрядным и имел возможность ввода/вывода и обработки четырехбитных слов. Быстродействие его составляло 8000 операций в секунду. Микропроцессор Intel 4004 был рассчитан на применение в программируемых калькуляторах с памятью размером в 4 Кбайт.

Через три года фирма Intel выпустила процессор 8080, который мог выполнять уже 16-битные арифметические операции, имел 1б-разрядную адресную шину и, следовательно, мог адресовать до 64 Кбайт памяти (2 516 0=65536). 1978 год ознаменовался выпуском процессора 8086 с размером слова в 16 бит (два байта), 20-разрядной шиной и мог оперировать уже с 1 Мбайт памяти (2 520 0=1048576, или 1024 Кбайт), разделенной на блоки (сегменты) по 64 Кбайт каждый. Процессором 8086 комплектовались компьютеры, совместимые с IBM PC и IBM PC/XT. Следующим крупным шагом в разработке новых микропроцессоров стал появившийся в 1982 году процессор 8028б. Он обладал 24-разрядной адресной шиной, мог распоряжаться 16 мегабайтами адресного пространства и ставился на компьютеры, совместимые с IBM PC/AT. В октябре 1985 года был выпущен 80386DX с 32- разрядной шиной адреса (максимальное адресное пространство - 4 Гбайт), а в июне 1988 года - 80386SX, более дешевый по сравнению с 80386DX и обладавший 24-разрядной адресной шиной. Затем в апреле 1989 года появляется микропроцессор 80486DX, а в мае 1993 - первый вариант процессора Pentium (оба с 32-разрядной шиной адреса).

В мае 1995 года в Москве на международной выставке Комтек-95 фирма Intel представила новый процессор - P6.

Одной из важнейших целей, поставленных при разработке P6, было удвоение производительности по сравнению с процессором Pentium. При этом производство первых версий P6 будет осуществляться по уже отлаженной "Intel" и используемой при производстве последних версий Pentium полупроводниковой технологии (О,6 мкм, З,З В).

Использование того же самого процесса производства дает гарантию того, что массовое производство P6 будет налажено без серьезных проблем. Вместе с тем это означает, что удвоение производительности достигается только за счет всестороннего улучшения микроархитектуры процессора. При разработке микроархитектуры P6 использовалась тщательно продуманная и настроенная комбинация различных архитектурных методов. Часть из них была ранее опробована в процессорах "больших" компьютеров, часть предложена академическими институтами, оставшиеся разработаны инженерами фирмы "Intel". Эта уникальная комбинация архитектурных особенностей, которую в "Intel" определяют словами "динамическое выполнение", позволила первым кристаллам P6 превзойти первоначально планировавшийся уровень производительности.

При сравнении с альтернативными "Intel" процессорами семейства х86 выясняется, что микроархитектура Р6 имеет много общего с микроархитектурой процессоров Nx586 фирмы NexGen и K5 фирмы AMD, и, хотя и в меньшей степени, с M1 фирмы "Cyrix". Эта общность объясняется тем, что инженеры четырех компаний решали одну и ту же задачу: внедрение элементов RISC-технологии при сохранении совместимости с CISC-архитектурой Intel х86.

Два кристалла в одном корпусе

Главное преимущество и уникальная особенность Р6 - размещенная в одном корпусе с процессором вторичная статическая кэш-память размером 256 кб, соединенная с процессором специально выделенной шиной. Такая конструкция должна существенно упростить проектирование систем на базе Р6. Р6 - первый предназначенный для массового производства микропроцессор, содержащий два чипа в одном корпусе.

Кристалл ЦПУ в Р6 содержит 5,5 миллионов транзисторов; кристалл кэш-памяти второго уровня - 15,5 миллионов. Для сравнения, последняя модель Pentium включала около 3,3 миллиона транзисторов, а кэш-память второго уровня реализовывалась с помощью внешнего набора кристаллов памяти.

Столь большое число транзисторов в кэше объясняется его статической природой. Статическая память в P6 использует шесть транзисторов для запоминания одного бита, в то время как динамической памяти было бы достаточно одного транзистора на бит. Статическая память быстрее, но дороже. Хотя число транзисторов на кристалле с вторичным кэшем втрое больше, чем на кристалле процессора, физические размеры кэша меньше: 202 квадратных миллиметра против 306 у процессора. Оба кристалла вместе заключены в керамический корпус с 387 контактами ("dual cavity pin-drid array"). Оба кристалла производятся с применением одной и той же технологии (0,6 мкм, 4- слойная металл-БиКМОП, 2,9 В). Предполагаемое максимальное потребление энергии: 20 Вт при частоте 133 МГц.

Первая причина объединения процессора и вторичного кэша в одном корпусе - облегчение проектирования и производства высокопроизводительных систем на базе Р6. Производительность вычислительной системы, построенной на быстром процессоре, очень сильно зависит от точной настройки микросхем окружения процессора, в частности вторичного кэша. Далеко не все фирмы-производители компьютеров могут позволить себе соответствующие исследования. В Р6 вторичный кэш уже настроен на процессор оптимальным образом, что облегчает проектирование материнской платы.

Вторая причина объединения - повышение производительности. Кзш второго уровня связан с процессором специально выделенной шиной шириной 64 бита и работает на той же тактовой частоте, что и процессор.

Первые процессоры Рentium с тактовой частотой 60 и 66 МГц обращались к вторичному кэшу по 64-разрядной шине с той же тактовой частотой. Однако с ростом тактовой частоты Pentium для проектировщиков стало слишком сложно и дорого поддерживать такую частоту на материнской плате. Поэтому стали применяться делители частоты. Например, у 100 МГц Pentium внешняя шина работает на частоте 66 МГц (у 90 МГц Pentium - соответственно 60 МГц). Pentium использует эту шину как для обращений к вторичному кэшу, так и для обращения к основной памяти и другим устройствам, например к набору чипов PCI.

Использование специально выделенной шины для доступа к вторичному кэшу улучшает производительность вычислительной системы. Во-первых, при этом достигается полная синхронизация скоростей процессора и шины; во-вторых, исключается конкуренция с другими операциями ввода-вывода и связанные с этим задержки. Шина кэша второго уровня полностью отделена от внешней шины, через которую происходит доступ к памяти и внешним устройствам. 64-битовая внешняя шина может работать со скоростью, равной половине, одной третьей или одной четвертой от скорости процессора, при этом шина вторичного кэша работает независимо на полной скорости.

Объединение процессора и вторичного кэша в одном корпусе и их связь через выделенную шину является шагом по направлению к методам повышения производительности, используемым в наиболее мощных RISC-процессорах. Так, в процессоре Alpha 21164 фирмы "Digital" кэш второго уровня размером 96 кб размещен в ядре процессора, как и первичный кэш. Это обеспечивает очень высокую производительность кэша за счет увеличения числа транзисторов на кристалле до 9,3 миллиона. Производительность Alpha 21164 составляет 330 SPECint92 при тактовой частоте 300 МГц. Производительность Р6 ниже (по оценкам "Intel" - 200 SPECint92 при тактовой частоте 133 МГц), однако Р6 обеспечивает лучшее соотношение стоимость/производительность для своего потенциального рынка.

При оценке соотношения стоимость/производительность следует учитывать, что, хотя Р6 может оказаться дороже своих конкурентов, большая часть других процессоров должна быть окружена дополнительным набором чипов памяти и контроллером кэша. Кроме того, для достижения сравнимой производительности работы с кэшом, другие процессоры должны будут использовать кэш большего, чем 256 кб размера.

"Intel", как правило, предлагает многочисленные вариации своих процессоров. Это делается с целью удовлетворить разнообразным требованиям проектировщиков систем и оставить меньше пространства для моделей конкурентов. Поэтому можно предположить, что вскоре после начала выпуска Р6 появятся как модификации с увеличенным объемом вторичной кэш-памяти, так и более дешевые модификации с внешним расположением вторичного кэша, но при сохраненной выделенной шине между вторичным кэшом и процессором.

Pentium как точка отсчета

Процессор Pentium со своей конвейерной и суперскалярной архитектурой достиг впечатляющего уровня производительности. Pentium содержит два 5-стадийных конвейера, которые могут работать параллельно и выполнять две целочисленные команды за машинный такт. При этом параллельно может выполняться только пара команд, следующих в программе друг за другом и удовлетворяющих определенным правилам, например, отсутствие регистровых зависимостей типа "запись после чтения".

В P6 для увеличения пропускной способности осуществлен переход к одному 12-стадийному конвейеру. Увеличение числа стадий приводит к уменьшению выполняемой на каждой стадии работы и, как следствие, к уменьшению времени нахождения команды на каждой стадии на 33 процента по сравнению с Pentium. Это означает, что использование при производстве P6 той же технологии, что и при производстве 100 МГц Pentium, приведет к получению P6 с тактовой частотой 133 МГц.

Возможности суперскалярной архитектуры Pentium, с ее способностью к выполнению двух команд за такт, было бы трудно превзойти без совершенно нового подхода. Примененный в P6 новый подход устраняет жесткую зависимость между традиционными фазами "выборки" и "выполнения", когда последовательность прохождения команд через эти две фазы соответствует последовательности команд в программе.

Новый подход связан с использованием так называемого пула команд и с новыми эффективными методами предвидения будущего поведения программы. При этом традиционная фаза "выполнение" заменяется на две: "диспетчирование/ выполнение" и "откат". В результате команды могут начинать выполняться в произвольном порядке, но завершают свое выполнение всегда в соответствии с их исходным порядком в программе. Ядро P6 реализовано как три независимых устройства, взаимодействующих через пул команд (рис. 1).

Основная проблема на пути повышения производительности

Решение об организации P6 как трех независимых и взаимодействующих через пул команд устройств было принято после тщательного анализа факторов, ограничивающих производительность современных микропроцессоров. Фундаментальный факт, справедливый для Pentium и многих других процессоров, состоит в том, что при выполнении реальных программ мощность процессора не используется в полной мере.

В то время как скорость процессоров за последние 10 лет выросла по меньшей мере в 10 раз, время доступа к основной памяти уменьшилось только на 60 процентов. Это увеличивающееся отставание скорости работы с памятью по отношению к скорости процессора и было той фундаментальной проблемой, которую пришлось решать при проектировании P6.

Один из возможных подходов к решению этой проблемы - перенос ее центра тяжести на разработку высокопроизводительных компонентов, окружающих процессор. Однако массовый выпуск систем, включающих и высокопроизводительный процессор, и высокоскоростные специализированные микросхемы окружения, был бы слишком дорогостоящим.

Можно было попытаться решить проблему с использованием грубой силы, а именно увеличить размер кэша второго уровня, чтобы уменьшить процент случаев отсутствия необходимых данных в кэше.

Это решение эффективное, но тоже чрезвычайно дорогостоящее, особенно учитывая сегодняшние скоростные требования к компонентам кэша второго уровня. P6 проектировался с точки зрения эффективной реализации целостной вычислительной системы, и требовалось, чтобы высокая производительность системы в целом достигалась с использованием дешевой подсистемы памяти.

Таким образом, реализованная в P6 комбинация таких архитектурных методов, как улучшенное предсказание переходов (почти всегда правильно определяется предстоящая последовательность команд), анализ потоков данных (определяется оптимальный порядок выполнения команд) и опережающее выполнение (предвиденная последовательность команд выполняется без простоев в оптимальном порядке), позволила удвоить производительность по отношению к Pentium при использовании той же самой технологии производства. Эта комбинация методов называется динамическим выполнением.

В настоящее время "Intel" ведет разработку новой 0,35 мкм технологии производства, что даст возможность выпускать процессоры P6 с тактовой частотой ядра свыше 200 МГц.

Р6 как платформа для построения мощных серверов

Среди наиболее значимых тенденций развития компьютеров в последние годы можно выделить как все возрастающее использование систем на основе процессоров семейства х86 в качестве серверов приложений, так и растущую роль "Intel" как поставщика непроцессорных технологий, таких как шины, сетевые технологии, сжатие видеоизображений, флэш-память и средства системного администрирования.

Выпуск процессора Р6 продолжает проводимую "Intel" политику переноса возможностей, которыми ранее обладали лишь более дорогие компьютеры, на массовый рынок. Для внутренних регистров Р6 предусмотрен контроль по четности, а соединяющая ядро процессора и кэш второго уровня 64-битовая шина оснащена средствами обнаружения и исправления ошибок. Встроенные в Р6 новые возможности диагностики позволяют производителям проектировать более надежные системы. В Р6 предусмотрена возможность получения через контакты процессора или с помощью программного обеспечения информации о более чем 100 переменных процессора или происходящих в нем событиях, таких как отсутствие данных в кэше, содержимое регистров, появление самомодифицирующего кода и так далее. Операционная система и другие программы могут считывать эту информацию для определения состояния процессора. В Р6 также реализована улучшенная поддержка контрольных точек, то есть обеспечивается возможность отката компьютера в зафиксированное ранее состояние в случае возникновения ошибки.

Подобные документы

    Средства вычислительной техники появились давно, так как потребность в различного рода расчетах существовала еще на заре развития цивилизации. Бурное развитие вычислительной техники. Создание первых ПК, мини-компьютеров начиная с 80-х годов ХХ века.

    реферат , добавлен 25.09.2008

    Характеристика систем технического и профилактического обслуживания средств вычислительной техники. Диагностические программы операционных систем. Взаимосвязь систем автоматизированного контроля. Защита компьютера от внешних неблагоприятных воздействий.

    реферат , добавлен 25.03.2015

    Разработка информационно-аналитической системы анализа и оптимизации конфигурации вычислительной техники. Структура автоматизированного управления средствами вычислительной техники. Программное обеспечение, обоснование экономической эффективности проекта.

    дипломная работа , добавлен 20.05.2013

    Ручной этап развития вычислительной техники. Позиционная система счисления. Развитие механики в XVII веке. Электромеханический этап развития вычислительной техники. Компьютеры пятого поколения. Параметры и отличительные особенности суперкомпьютера.

    курсовая работа , добавлен 18.04.2012

    Устройство и принцип работы персонального компьютера (ПК). Диагностика работоспособности ПК и определение неисправностей. Задачи технического обслуживания средств вычислительной техники. Разработка методик поддержания техники в работоспособном состоянии.

    курсовая работа , добавлен 13.07.2011

    Изучение зарубежной, отечественной практики развития вычислительной техники, а также перспективы развития ЭВМ в ближайшее будущее. Технологии использования компьютеров. Этапы развития вычислительной индустрии в нашей стране. Слияние ПК и средств связи.

    курсовая работа , добавлен 27.04.2013

    Классификация проектных процедур. История синтеза вычислительной техники и инженерного проектирования. Функции систем автоматизированного проектирования, их программное обеспечение. Особенности применения трехмерных сканеров, манипуляторов и принтеров.

    реферат , добавлен 25.12.2012

    Автоматизация обработки данных. Информатика и ее практические результаты. История создания средств цифровой вычислительной техники. Электромеханические вычислительные машины. Использование электронных ламп и ЭВМ первого, третьего и четвертого поколения.

    дипломная работа , добавлен 23.06.2009

    Понятие и характеристика персонального компьютера, его основные части и их предназначение. Средства обучения информатики и особенности организации работы в кабинете вычислительной техники. Оборудование рабочих мест и применение программного обеспечения.

    реферат , добавлен 09.07.2012

    Состав вычислительной системы - конфигурация компьютера, его аппаратные и программные средства. Устройства и приборы, образующие аппаратную конфигурацию персонального компьютера. Основная память, порты ввода-вывода, адаптер периферийного устройства.

Вычислительная техника

Основные понятия.

Часто понятие «вычислительная техника» отождествляют с понятием «компьютер». В этом случае под данным понятием имеют ввиду следующее:

Определение: Компьютер (англ. computer – «вычислитель») – машина для проведения вычислений.

При помощи вычислений компьютер способен обрабатывать информацию по заранее определённому алгоритму. Кроме того, большинство компьютеров способны сохранять информацию и осуществлять поиск информации, выводить информацию на различные виды устройств выдачи информации. Своё название компьютеры получили по своей основной функции – проведению вычислений. Однако в настоящее время лучше сказать, что основные функции компьютеров – обработка информации и управление.

Основные принципы : Выполнение поставленных перед ним задач компьютер может обеспечивать при помощи перемещения каких-либо механических частей, движения потоков электронов, фотонов, квантовых частиц или за счёт использования эффектов от любых других хорошо изученных физических явлений.

Наибольшее распространение среди компьютеров получили так называемые «электронно-вычислительные машины», ЭВМ . Собственно, для подавляющего большинства людей, слова «электронно-вычислительные машины» и «компьютеры» стали словами – синонимами, хотя на самом деле это не так. Наиболее распространённый тип компьютеров – электронный персональный компьютер.

Архитектура компьютеров может непосредственно моделировать решаемую проблему, максимально близко (в смысле математического описания) отражая исследуемые физические явления. Так, электронные потоки могут использоваться в качестве моделей потоков воды при моделировании дамб или плотин. Подобным образом сконструированные аналоговые компьютеры были обычны в 60-х годах XX века, однако сегодня стали достаточно редким явлением.

В большинстве современных компьютеров проблема сначала описывается в математических терминах, при этом вся необходимая информация представляется в двоичной форме (в виде единиц и нулей), после чего действия по её обработке сводятся к применению простой алгебры логики. Поскольку практически вся математика может быть сведена к выполнению булевых операций, достаточно быстрый электронный компьютер может быть применим для решения большинства математических задач (а также и большинства задач по обработке информации, которые могут быть легко сведены к математическим).

Было обнаружено, что компьютеры всё-таки могут решить не любую математическую задачу. Впервые задачи, которые не могут быть решены при помощи компьютеров, были описаны английским математиком Аланом Тьюрингом.

Результат выполненной задачи может быть представлен пользователю при помощи различных устройств ввода-вывода информации, таких, как ламповые индикаторы, мониторы, принтеры и т. п.

Начинающие пользователи и особенно дети зачастую с трудом воспринимают идею того, что компьютер – просто машина и не может самостоятельно «думать» или «понимать» те слова, которые он показывает. Компьютер лишь механически отображает заданные программой линии и цвета при помощи устройств ввода-вывода. Человеческий мозг сам признаёт в изображённом на экране образы, числа или слова и придаёт им те или иные значения.

С точки зрения деления информатики на отдельные науки, говорят о науке «вычислительная техника».

Определение: Информатика и вычислительная техника – это область науки и техники, которая включает в себя совокупность средств, способов и методов человеческой деятельности, направленных на создание и применение:

· ЭВМ, систем и сетей;

· автоматизированных систем обработки информации и управления;

· систем автоматизированного проектирования;

· программного обеспечения вычислительной техники и автоматизированных систем.

Определение: Вычислительная техника – это

1) область техники, объединяющая средства автоматизации математических вычислений и обработки информации в различных областях человеческой деятельности;

2) наука о принципах построения, действия и проектирования этих средств.

§2. «Вычислительная техника» = «компьютер».

Этимология

Слово компьютер является производным от английских слов to compute , computer , которые переводятся как «вычислять», «вычислитель» (английское слово, в свою очередь, происходит от латинского computo – «вычисляю»). Первоначально в английском языке это слово означало человека, производящего арифметические вычисления с привлечением или без привлечения механических устройств. В дальнейшем его значение было перенесено на сами машины, однако современные компьютеры выполняют множество задач, не связанных напрямую с математикой.

Впервые трактовка слова компьютер появилась в 1897 году в Оксфордском английском словаре. Его составители тогда понимали компьютер как механическое вычислительное устройство. В 1946 году словарь пополнился дополнениями, позволяющими разделить понятия цифрового, аналогового и электронного компьютеров.

Классификации компьютеров

Четких границ между классами компьютеров не существует . По мере совершенствования структур и технологии производства, появляются новые классы компьютеров, границы существующих классов существенно изменяются.

Существуют различные классификации компьютерной техники:

I. по принципу действия

1. аналоговые (АВМ),

2. цифровые (ЦВМ)

3. гибридные (ГВМ)

II. по этапам создания (по поколениям)

1. 1-е поколение , 50-е гг.: ЭВМ на электронных вакуумных лампах;

2. 2-е поколение , 60-е гг.: ЭВМ на дискретных полупроводниковых приборах (транзисторах);

3. 3-е поколение , 70-е гг.: ЭВМ на полупроводниковых интегральных схемах с малой и средней степенью интеграции (сотни - тысячи транзисторов в одном корпусе); Примечание. Интегральная схема – электронная схема специального назначения, выполненная в виде единого полупроводникового кристалла, объединяющего большое число диодов и транзисторов.

4. 4-е поколение , 80-е гг.: ЭВМ на больших и сверхбольших интегральных схемах - микропроцессорах (десятки тысяч - миллионы транзисторов в одном кристалле);

5. 5-е поколение , 90-е гг.: ЭВМ со многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы;

6. 6-е и последующие поколения : оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой - с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

III. по назначению

1. универсальные (общего назначения),

2. проблемно-ориентированные

3. специализированные

1. Базовая ЭВМ .

2. Универсальная ЭВМ .

3. Специализированная ЭВМ .

1) Управляющая ЭВМ .

2) Бортовая ЭВМ .

3) Выделенная ЭВМ .

4) Бытовая (домашняя) ЭВМ .

IV. по размерам и функциональным возможностям

1. сверхбольшие (суперЭВМ),

2. большие,

4. сверхмалые (микроЭВМ)

1) универсальные

а) многопользовательские

б) однопользовательские (персональные)

2) специализированные

а) многопользовательские (серверы)

б) однопользовательские (рабочие станции)

V. По условиям эксплуатации компьютеры делятся на два типа:

1. офисные (универсальные);

2. специальные.

Следует отметить, что существуют и другие классификации. Например:

· по архитектуре.

· по производительности.

· по количеству процессоров.

· по потребительским свойствам.

Краткое описание классов компьютеров

По принципу действия

Критерием деления вычислительных машин на эти три класса является форма представления информации, с которой они работают (смотри рисунок).

Рис. Две формы предоставления информации в машинах:

а – аналоговая; б – цифровая импульсная.

Цифровые вычислительные машины (ЦВМ) – вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее, в цифровой форме.

Такие вычислительные машины часто называют ЭВМ (электронно-вычислительные машины, электронные вычислительные машины). Наиболее широкое применение получили ЦВМ с электрическим представлением дискретной информации – электронные цифровые вычислительные машины, обычно называемые просто электронными вычислительными машинами (ЭВМ), без упоминания об их цифровом характере.

В отличие от АВМ, в ЭВМ числа представляются в виде последовательности цифр. В современных ЭВМ числа представляются в виде кодов двоичных эквивалентов, то есть в виде комбинаций 1 и 0. В ЭВМ осуществляется принцип программного управления. ЭВМ можно разделить на цифровые, электрифицированные и счётно-аналитические (перфорационные) вычислительные машины.

ЭВМ разделяются на большие ЭВМ, мини-ЭВМ и микроЭВМ. Они отличаются своей архитектурой, техническими, эксплуатационными и габаритно-весовыми характеристиками, областями применения.

Достоинства ЭВМ:

§ высокая точность вычислений;

§ универсальность;

§ автоматический ввод информации, необходимый для решения задачи;

§ разнообразие задач, решаемых ЭВМ;

§ независимость количества оборудования от сложности задачи.

Недостатки ЭВМ:

§ сложность подготовки задачи к решению (необходимость специальных знаний методов решения задач и программирования);

§ недостаточная наглядность протекания процессов, сложность изменения параметров этих процессов;

§ сложность структуры ЭВМ, эксплуатация и техническое обслуживание;

§ требование специальной аппаратуры при работе с элементами реальной аппаратуры

Аналоговые вычислительные машины (АВМ) – вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения).

Аналоговые вычислительные машины весьма просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно большой(больше, чем у ЦВМ), но точность решения задач очень низкая (относительная погрешность 2-5 %). На АВМ наиболее эффективно решать математические задачи, содержащие дифференциальные уравнения, не требующие сложной логики.

Это вычислительная машина непрерывного действия, обрабатывающая аналоговые данные. Предназначена она для воспроизведения определенных соотношений между непрерывно изменяющимися физическими величинами. Основные области применения связаны с моделированием различных процессов и систем.

В АВМ все математические величины представляются как непрерывные значения каких-либо физических величин. Главным образом, в качестве машинной переменной выступает напряжение электрической цепи. Их изменения происходят по тем же законам, что и изменения заданных функций. В этих машинах используется метод математического моделирования (создаётся модель исследуемого объекта). Результаты решения выводятся в виде зависимостей электрических напряжений в функции времени на экран осциллографа или фиксируются измерительными приборами. Основным назначением АВМ является решение линейных и дифференцированных уравнений.

Достоинства АВМ:

§ высокая скорость решения задач, соизмеримая со скоростью прохождения электрического сигнала;

§ простота конструкции АВМ;

§ лёгкость подготовки задачи к решению;

§ наглядность протекания исследуемых процессов, возможность изменения параметров исследуемых процессов во время самого исследования.

Недостатки АВМ:

§ малая точность получаемых результатов (до 10%);

§ алгоритмическая ограниченность решаемых задач;

§ ручной ввод решаемой задачи в машину;

§ большой объём задействованного оборудования, растущий с увеличением сложности задачи

Гибридные вычислительные машины (ГВМ) – вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Иногда такие машины называют «комбинированные вычислительные машины », «аналого-цифровые вычислительные машины (АЦВМ) »

Они имеют такие характеристики, как быстродействие, простота программирования и универсальность. Основной операцией является интегрирование, которое выполняется с помощью цифровых интеграторов.

В таких машинах числа представляются как в ЭВМ (последовательностью цифр), а метод решения задач как в АВМ (метод математического моделирования).

По этапам создания

Деление компьютерной техники на поколения – весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с компьютером.

Идея делить машины на поколения вызвана к жизни тем, что за время короткой истории своего развития компьютерная техника проделала большую эволюцию как в смысле элементной базы (лампы, транзисторы, микросхемы и др.), так и в смысле изменения её структуры, появления новых возможностей, расширения областей применения и характера использования.

ЭВМ I-го поколения [ first-generation computer ]

К первому поколению обычно относят машины, созданные на рубеже 50-х годов.

Все ЭВМ I-го поколения были сделаны на основе электронных ламп , что делало их ненадежными – лампы приходилось часто менять.

Рис. Электронная лампа

Эти компьютеры были огромными, неудобными и слишком дорогими машинами , которые могли приобрести только крупные корпорации и правительства. Лампы потребляли огромное количество электроэнергии и выделяли много тепла .

Набор команд был небольшой, схема арифметико-логического устройства и устройства управления достаточно проста, программное обеспечение практически отсутствовало. Показатели объема оперативной памяти и быстродействия были низкими. Для ввода-вывода использовались перфоленты, перфокарты, магнитные ленты и печатающие устройства.

Рис. Перфокарта

Быстродействие порядка 10-20 тысяч операций в секунду.

Но это только техническая сторона. Очень важна и другая – способы использования компьютеров, стиль программирования, особенности математического обеспечения.

Программирование выполнялось на языках программирования низкого уровня. Программы для этих машин писались на языке конкретной машины . Математик, составивший программу, садился за пульт управления машины, вводил и отлаживал программы и производил по ним счет. Процесс отладки был наиболее длительным по времени.

Несмотря на ограниченность возможностей, эти машины позволили выполнить сложнейшие расчёты, необходимые для прогнозирования погоды, решения задач атомной энергетики и др.

Опыт использования машин первого поколения показал, что существует огромный разрыв между временем, затрачиваемым на разработку программ, и временем счета.

Рис. а – Компьютер "Эниак", б – ЭВМ «Урал»

Эти проблемы начали преодолевать путем интенсивной разработки средств автоматизации программирования, создания систем обслуживающих программ, упрощающих работу на машине и увеличивающих эффективность её использования . Это, в свою очередь, потребовало значительных изменений в структуре компьютеров, направленных на то, чтобы приблизить её к требованиям, возникшим из опыта эксплуатации компьютеров.

Отечественные машины первого поколения: МЭСМ (малая электронная счётная машина), БЭСМ, Стрела, Урал, М-20.

ЭВМ II -го поколения [second -generation computer ]

Машины этого поколения были сконструированы примерно в 1955-65 годах.

В 1958 г . в ЭВМ (ЭВМ II-го поколения) были применены полупроводниковые транзисторы , изобретённые в 1948 г. Уильямом Шокли.

История изобретения:

· 1 июля 1948 года на одной из страниц «New York Times», посвященной радио и телевидению, было помещено скромное сообщение о том, что фирма «Белл телефон лабораториз» разработала электронный прибор, способный заменить электронную лампу. Физик-теоретик Джон Бардин и ведущий экспериментатор фирмы Уолтер Браттэйн создали первый действующий транзистор. Это был точечно-контактный прибор, в котором 2 металлических «усика» контактировали с бруском из поликристаллического германия.

· Созданию транзистора предшествовала упорная, почти 10-летняя работа, которую в 1938 или 1939 году начал физик-теоретик Уильям Шокли. Впрочем, если быть точнее, история транзистора началась гораздо раньше. Еще в 1906 году француз Пикар предложил кристаллический детектор, затем в 1922 году советский радиофизик О.В. Лосев показал возможность усиления и генерирования колебаний с помощью таких детекторов. Спустя 3 года профессор Лейпцигского университета Юлиус Лилиенфельд попытался создать усилительный полупроводниковый прибор. Однако эти эксперименты были забыты. О них вспомнили лишь после того, как транзистор завоевал всемирное признание.

· Произошло это, кстати, довольно быстро. После нескольких лет поисков технологии изготовления полупроводниковых приборов и изобретения новых конструкций (в частности, плоскостного транзистора, запатентованного У. Шокли в 1951 году) целый ряд американских фирм приступил к серийному выпуску транзисторов, которые на первых порах использовались в основном в аппаратуре радио и связи.

Транзисторы были более надёжны, долговечны, малы, могли выполнить значительно более сложные вычисления, обладали большой оперативной памятью. 1 транзистор способен был заменить ~ 40 электронных ламп и работает с большей скоростью.

При этом сначала в этих компьютерах применялись как электронные лампы, так и дискретные транзисторные логические элементы. Позже дискретные транзисторные логические элементы вытеснили электронные лампы .

§ В качестве носителей информации использовались магнитные ленты ("БЭСМ-6", "Минск-2","Урал-14") и магнитные сердечники .

§ Их оперативная памят ь была построена на магнитных сердечниках .

§ Стал расширяться диапазон применяемого оборудования ввода-вывода, появились высокопроизводительные устройства для работы с магнитными лентами, магнитные барабаны и первые магнитные диски .

§ В качестве программного обеспечения стали использовать языки программирования высокого уровня . Средства таких языков допускают описание всей необходимой последовательности вычислительных действий в наглядном, легко воспринимаемом виде . Программа, написанная на алгоритмическом языке, непонятна компьютеру, воспринимающему только язык своих собственных команд. Поэтому специальные программы, которые называются трансляторами , переводят программу с языка высокого уровня на машинный язык.

§ Появился широкий набор библиотечных программ для решения разнообразных математических задач.

§ Появились мониторные системы, управляющие режимом трансляции и исполнения программ . Из мониторных систем в дальнейшем выросли современные операционные системы.Таким образом, операционная система является программным расширением устройства управления компьютера. Для некоторых машин второго поколения уже были созданы операционные системы с ограниченными возможностями.

§ Машинам второго поколения была свойственна программная несовместимость , которая затрудняла организацию крупных информационных систем. Поэтому в середине 60-х годов наметился переход к созданию компьютеров, программно совместимых и построенных на микроэлектронной технологической базе.

§ Быстродействие – до сотен тысяч операций в секунду.

§ Ёмкость памяти – до нескольких десятков тысяч слов.

Особенности, отличие от первого поколения.

1. Более высокая надежность.

2. Меньшее потребление энергии.

3. Более высокое быстродействие за счет:

· Повышение скорости переключения счетных и запоминающих элементов

· Изменения в структуре машин.

Рис. а – Транзистор, б – память на магнитных сердечниках

Уже начиная со второго поколения, машины стали делиться на большие, средние и малые по признакам размеров, стоимости, вычислительных возможностей. Так, небольшие отечественные машины второго поколения (“Наири”, “Раздан”, “Мир” и др.) с производительностью порядка 10 4 операций в секунду были в конце 60-х годов вполне доступны каждому вузу, в то время как упомянутая выше БЭСМ-6 имела профессиональные показатели (и стоимость) на 2 – 3 порядка выше.

Рис. БЭСМ-6.

ЭВМ III -го поколения [third-generation computer ]

В 1960 г. появились первые интегральные схемы (ИС), которые получили широкое распространение в связи с малыми размерами, но громадными возможностями.

Рис. Интегральные схемы

ИС (интегральная схема) – это кремниевый кристалл, площадь которого примерно 10 мм 2 . Первая ИС способна заменить десятки тысяч транзисторов. Один кристалл выполняет такую же работу, как и 30-ти тонный “Эниак”. А компьютер с использованием ИС достигает производительности в 10 млн. операций в секунду.

В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.

Машины третьего поколения – это семейства машин с единой архитектурой, т.е. программно совместимых. В качестве элементной базы в них используются интегральные схемы, которые также называются микросхемами.

Машины третьего поколения имеют развитые операционные системы. Они обладают возможностями мультипрограммирования, т.е. одновременного выполнения нескольких программ. Многие задачи управления памятью, устройствами и ресурсами стала брать на себя операционная система или же непосредственно сама машина.

Примеры машин третьего поколения – семейства IBM-360, IBM-370, ЕС ЭВМ (Единая система ЭВМ), СМ ЭВМ (Семейство малых ЭВМ) и др. Быстродействие машин внутри семейства изменяется от нескольких десятков тысяч до миллионов операций в секунду. Ёмкость оперативной памяти достигает нескольких сотен тысяч слов.

Первые интегральные схемы (ИС)

Первая интегральная схема, разработанная в 1960 году, была прототипом современных микрочипов. Интегральная схема состоит из миниатюрных транзисторов и других элементов, монтируемых на кремниевом кристаллике.

37 лет назад, в 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.

Модели имели единую систему команд и отличались друг от друга объемом оперативной памяти и производительностью. Глава фирмы IBM Томас Уотсон-младший назвал появление данного семейства машин "самым важным событием в истории компании". Первые образцы машин серии IBM 360 поступили к заказчикам во второй половине 1965 года, а к 1970 году фирма разработала около 20 моделей, однако некоторые из них так и не были доведены до серийного производства (Всего было выпущено более 33 тыс. машин этого семейства).

При создании моделей семейства использовался ряд новых принципов, что делало машины универсальными и позволяло с одинаковой эффективностью применять их как для решения задач в различных областях науки и техники, так и для обработки данных в сфере управления и бизнеса (число 360 в названии серии указывает на способность машин работать во всех направлениях – в пределах 360°). Наиболее важными из нововведений являлись:

· элементная и технологическая база машин третьего поколения;

· программная совместимость всех моделей семейства;

· операционная система, содержащая трансляторы для наиболее распространенных в то время языков программирования (Фортран, Кобол, RPG, Алгол 60, ПЛ/1), причем имелась возможность включать в систему трансляторы для других языков;

· "универсальность" системы команд, которая обеспечивалась путем добавления дополнительных команд для различных целей к так называемой стандартной системе команд;

· возможность подключения большого количества внешних устройств и стандартного сопряжения этих устройств с процессором через аппаратуру каналов связи (при этом имелась возможность объединять несколько машин в одну вычислительную систему);

· организация памяти, не зависящая от физической реализации, обеспечивающая простое перемещение и гибкую защиту программ;

· мощная система аппаратно-программных прерываний, позволявшая организовать эффективную работу машин в реальном масштабе времени. Создание моделей серии IBM 360 оказало существенное влияние на весь ход развития компьютерной техники. Структура и архитектура этих машин с теми или иными изменениями в элементной базе были воспроизведены в ряде семейств ЭВМ многих стран.

ЭВМ III-го поколения. В 1960 г . появились первые интегральные схемы (ИС) , которые получили широкое распространение в связи с малыми размерами, но громадными возможностями.

· Компьютер с использованием ИС достигает производительности в 10 млн. операций в секунду .

· В 1964 году, фирма IBM объявила о создании шести моделей семейства IBM 360 (System 360), ставших первыми компьютерами третьего поколения.

· Машины третьего поколения - это семейства машин с единой архитектурой , т.е. программно совместимых .

· В качестве элементной базы в них используются интегральные схемы , которые также называются микросхемами .

· Машины третьего поколения имеют развитые операционные системы .

· Они обладают возможностями мультипрограммирования , т.е. одновременного выполнения нескольких программ.

ЭВМ IV-го поколения [fourth-generation computer ]

В начале 70-х годов начали использовать средние интегральные схемы. А позже – большие интегральные схемы.

Помимо изменения элементно-технологической базы, появились новые идеи по структуре вычислительных машин, программированию, использованию и эксплуатации вычислительных систем и т.п.

Впервые стали применяться большие интегральные схемы (БИС), которые по мощности примерно соответствовали 1000 ИС. Это привело к снижению стоимости производства компьютеров. В 1980 г. центральный процессор небольшой ЭВМ оказалось возможным разместить на кристалле площадью 1/4 дюйма (0,635 см 2 .).

БИСы применялись уже в таких компьютерах, как “Иллиак”, ”Эльбрус”, ”Макинтош”. Быстродействие таких машин составляет тысячи миллионов операций в секунду. Емкость ОЗУ (оперативной памяти) возросла до 500 млн. двоичных разрядов. В таких машинах одновременно выполняются несколько команд над несколькими наборами операндов.

C точки зрения структуры: машины этого поколения представляют собой многопроцессорные и многомашинные комплексы , работающие на общую память и общее поле внешних устройств. Ёмкость оперативной памяти порядка 1 – 64 Мбайт.

Распространение персональных компьютеров к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ. Это стало предметом серьезного беспокойства фирмы IBM (International Business Machines Corporation) – ведущей компании по производству больших ЭВМ, и в 1979 г. фирма IBM решила попробовать свои силы на рынке персональных компьютеров, создав первые персональные компьютеры – IBM PC.

Для них характерны:

· применение персональных компьютеров;

· телекоммуникационная обработка данных;

· компьютерные сети;

· широкое применение систем управления базами данных;

· элементы интеллектуального поведения систем обработки данных и устройств.

ЭВМ четвертого поколения– используют большие и сверхбольшие интегральные схемы (БИС и СБИС), виртуальную память , многопроцессорный с параллельным выполнением операций принцип построения, развитые средства диалога .

ЭВМ V-го поколения [fourth-generation computer ], ЭВМ VI-го поколения и так далее

ЭВМ пятого поколения– 90-е гг.: ЭВМ со многими десятками параллельно работающих микропроцессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных команд программы.

ЭВМ шестого поколения и последующие поколения: оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой – с распределенной сетью большого числа (десятки тысяч) несложных микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Каждое следующее поколение ЭВМ имеет по сравнению с предшествующим существенно лучшие характеристики. Так, производительность ЭВМ и емкость всех запоминающих устройств увеличиваются, как правило, больше чем на порядок.

Если перед разработчиками ЭВМ с I по IV поколений стояли такие задачи, как увеличение производительности в области числовых расчётов, достижение большой ёмкости памяти, то основной задачей разработчиков ЭВМ V поколения (и последующих) является создание искусственного интеллекта машины (возможность делать логические выводы из представленных фактов), развитие "интеллектуализации" компьютеров – устранения барьера между человеком и компьютером. Компьютеры будут способны воспринимать информацию с рукописного или печатного текста, с бланков, с человеческого голоса, узнавать пользователя по голосу, осуществлять перевод с одного языка на другой. Это позволит общаться с ЭВМ всем пользователям, даже тем, кто не обладает специальных знаний в этой области. ЭВМ будет помощником человеку во всех областях.

Разработка последующих поколений компьютеров производится на основе больших интегральных схем повышенной степени интеграции , использования оптоэлектронных принципов (лазеры, голография ).

Происходит качественный переход от обработки данных к обработке знаний .

Предполагается, что архитектура компьютеров будущего поколения будет содержать два основных блока. Один из них – это традиционный компьютер. Но теперь он лишён связи с пользователем. Эту связь осуществляет блок, называемый термином «интеллектуальный интерфейс» . Его задача – понять текст, написанный на естественном языке и содержащий условие задачи, и перевести его в работающую программу для компьютера.

Будет также решаться проблема децентрализации вычислений с помощью компьютерных сетей, как больших, находящихся на значительном расстоянии друг от друга, так и миниатюрных компьютеров, размещённых на одном кристалле полупроводника.

По назначению

Универсальные ЭВМ предназначены для решения самых различных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Они широко используются в вычислительных центрах коллективного пользования и в других мощных вычислительных комплексах.

Характерными чертами универсальных ЭВМ являются:

  • высокая производительность;
  • разнообразие форм обрабатываемых данных: двоичных, десятичных, символьных, при большом диапазоне их изменения и высокой точности их представления;
  • обширная номенклатура выполняемых операций, как арифметических, логических, так и специальных;
  • большая емкость оперативной памяти;
  • развитая организация системы ввода-вывода информации, обеспечивающая подключение разнообразных видов внешних устройств.

Проблемно-ориентированные ЭВМ служат для решения более узкого круга задач, связанных, как правило, с управлением технологическими объектами; регистрацией, накоплением и обработкой относительно небольших объемов данных; выполнением расчетов по относительно несложным алгоритмам; они обладают ограниченными по сравнению с универсальными ЭВМ аппаратными и программными ресурсами.

К проблемно-ориентированным ЭВМ можно отнести, в частности, всевозможные управляющие вычислительные комплексы.

Специализированные ЭВМ используются для решения узкого круга задач или реализации строго определенной группы функций. Такая узкая ориентация ЭВМ позволяет четко специализировать их структуру, существенно снизить их сложность и стоимость при сохранении высокой производительности и надежности их работы.

К специализированным ЭВМ можно отнести, например, программируемые микропроцессоры специального назначения; адаптеры и контроллеры, выполняющие логические функции управления отдельными несложными техническими устройствами, агрегатами и процессами; устройства согласования и сопряжения работы узлов вычислительных систем.

Базовая ЭВМ [original computer ] – ЭВМ, являющаяся начальной исходной моделью в серии ЭВМ определенного типа или вида.

Универсальная ЭВМ [universal computer ] – ЭВМ, предназначенная для решения широкого класса задач. ЭВМ этого класса имеют разветвленную и алгоритмически полную систему операций, иерархическую структуру ЗУ и развитую систему устройств ввода-вывода данных.

Специализированная ЭВМ [specialized computer ] – ЭВМ, предназначенная для решения узкого класса определенных задач. Характеристики и архитектура машин этого класса определяются спецификой задач, на которые они ориентированы, что делает их более эффективными в соответствующем применении по отношению к универсальным ЭВМ . К разряду специализированных могут быть отнесены, в частности, – “управляющие”, “бортовые“, “бытовые“ и “выделенные“ ЭВМ.

Управляющая ЭВМ [control computer ] – ЭВМ, предназначенная для автоматического управления объектом (устройством, системой, процессом) в реальном масштабе времени. Сопряжение ЭВМ с объектом управления производится с помощью аналого-цифровых и цифро-аналоговых преобразователей .

3. Вычислительная техника 1

3.1 История развития средств вычислительной техники 1

3.2 Методы классификации компьютеров 3

3.3 Другие виды классификации компьютеров 5

3.4 Состав вычислительной системы 7

3.4.1 Аппаратное обеспечение 7

3.4.2 Программное обеспечение 7

3.5 Классификация прикладных программных средств 9

3.6 Классификация служебных программных средств 12

3.7 Понятие об информационном и математическом обеспечении вычислительных систем 13

3.8 Подведение итогов 13

  1. Вычислительная техника

    1. История развития средств вычислительной техники

Вычислительная система, компьютер

Изыскание средств и методов механизации и автоматизации работ - одна из основ­ных задач технических дисциплин. Автоматизация работ с данными имеет свои особенности и отличия от автоматизации других типов работ. Для этого класса задач используют особые виды устройств, большинство из которых являются элек­тронными приборами. Совокупность устройств, предназначенных для автомати­ческой или автоматизированной обработки данных, называют вычислительной тех­никой, Конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка, называютвычисли­тельной системой. Центральным устройством большинства вычислительных сис­тем являетсякомпьютер.

Компьютер - это электронной прибор, предназначенный для автоматизации созда­ния, хранения, обработки и транспортировки данных.

Принцип действия компьютера

В определении компьютера как прибора мы указали определяющий признак - электронный. Однако автоматические вычисления не всегда производились элек­тронными устройствами. Известны и механические устройства, способные выпол­нять расчеты автоматически.

Анализируя раннюю историю вычислительной техники, некоторые зарубежные исследователи нередко в качестве древнего предшественника компьютера называют механическое счетное устройство абак. Подход «от абака» свидетельствует о глубо­ком методическом заблуждении, поскольку абак не обладает свойством автомати­ческого выполнения вычислений, а для компьютера оно определяющее.

Абак- наиболее раннее счетное механическое устройство, первоначально представ­лявшее собой глиняную пластину с желобами, в которых раскладывались камни, пред­ставляющие числа. Появление абака относят к четвертому тысячелетию до н. э. Местом появления считается Азия. В средние века в Европе абак сменился разграфленными таблицами. Вычисления с их помощью называли счетом на линиях, а в России в XVI-XVII веках появилось намного более передовое изобретение, применяемое и поныне, -русские счеты.

В то же время, нам хорошо знаком другой прибор, способный автоматически выпол­нять вычисления, - это часы. Независимо от принципа действия, все виды часов (песочные, водяные, механические, электрические, электронные и др.) обладают способностью генерировать через равные промежутки времени перемещения или сигналы и регистрировать возникающие при этом изменения, то есть выполнять автоматическое суммирование сигналов или перемещений. Этот принцип просле­живается даже в солнечных часах, содержащих только устройство регистрации (роль генератора выполняет система Земля - Солнце).

Механические часы - прибор, состоящий из устройства, автоматически выполняющего перемещения через равные заданные интервалы времени и устройства регистрации этих перемещений. Место появления первых механических часов неизвестно. Наиболее ранние образцы относятся к XIV веку и принадлежат монастырям (башенные часы).

В основе любого современного компьютера, как и в электронных часах, лежит так­товый генератор, вырабатывающий через равные интервалы времени электриче­ские сигналы, которые используются для приведения в действие всех устройств компьютерной системы. Управление компьютером фактически сводится к управле­нию распределением сигналов между устройствами. Такое управление может про­изводиться автоматически (в этом случае говорят опрограммном управлении) или вручную с помощью внешних органов управления - кнопок, переключателей, пере­мычек и т. п. (в ранних моделях). В современных компьютерах внешнее управле­ние в значительной степени автоматизировано с помощью специальных аппаратно-логических интерфейсов, к которым подключаются устройства управления и ввода данных (клавиатура, мышь, джойстик и другие). В отличие от программного управ­ления такое управление называютинтерактивным.

Механические первоисточники

Первое в мире автоматическое устройство для выполнения операции сложения было создано на базе механических часов. В 1623 году его разработал Вильгельм Шикард, профессор кафедры восточных языков в университете Тюбингена (Германия). В наши дни рабочая модель устройства была воспроиз­ведена по чертежам и подтвердила свою работо­способность. Сам изобретатель в письмах называл машину «суммирующими часами».

В 1642 году французский механик Блез Паскаль (1623-1662) разработал более компактное сумми­рующее устройство, которое стало первым в мире механическим калькулятором, выпускавшимся серийно (главным образом для нужд парижских ростовщиков и менял). В 1673 году немецкий математик и философ Г. В. Лейбниц (1646-1717) создал меха­нический калькулятор, который мог выполнять операции умножения и деления путем многократного повторения операций сложения и вычитания.

На протяжении XVIII века, известного как эпоха Просвещения, появились новые, более совершенные модели, но принцип механического управления вычислитель­ными операциями оставался тем же. Идея программирования вычислительных опе­раций пришла из той же часовой промышленности. Старинные монастырские ба­шенные часы были настроены так, чтобы в заданное время включать механизм, связанный с системой колоколов. Такое программирование было жестким - одна и та же операция выполнялась в одно и то же время.

Идея гибкого программирования механических устройств с помощью перфорированной бумажной ленты впервые была реализована в 1804 году в ткацком станке Жаккарда, после чего оставался только один шаг до программного управления вычислитель­ными операциями.

Этот шаг был сделан выдающимся английским матема­тиком и изобретателем Чарльзом Бэббиджем (1792-1871) в его Аналитической машине, которая, к сожалению, так и не была до конца построена изобретателем при жизни, но была воспроизведена в наши дни по его чертежам, так что сегодня мы вправе говорить об Аналитической машине, как о реально существующем устройстве. Особенностью Аналитической машины стало то, что здесь впервые был реализован принцип разделения информации на команды и данные. Аналитическая машина содержала два крупных узла - «склад» и «мельницу». Данные вводились в меха­ническую память «склада» путем установки блоков шесте­рен, а потом обрабатывались в «мельнице» с использова­нием команд, которые вводились с перфорированных карт (как в ткацком станке Жаккарда).

Исследователи творчества Чарльза Бэббиджа непременно отмечают особую роль в разработке проекта Аналитической машины графини Огасты Ады Лавлейс (1815-1852), дочери известного поэта лорда Байрона. Именно.ей принадлежала идея использова­ния перфорированных карт для программирования вычислительных операций (1843). В частности, в одном из писем она писала: «Аналитическая машина точно так же плетет алгебраические узоры, как ткацкий станок воспроизводит цветы и листья». Леди Аду можно с полным основанием назвать самым первым в мире программистом. Сегодня ее именем назван один из известных языков программирования.

Идея Чарльза Бэббиджа о раздельном рассмотрении команд иданных оказалась необычайно плодотворной. В XX в. она была развита в принципах Джона фон Ней­мана (1941 г.), и сегодня в вычислительной технике принцип раздельного рассмотренияпрограмм иданных имеет очень важное значение. Он учитывается и при разработке архитектур современных компьютеров, и при разработке компью­терных программ.

Математические первоисточники

Если мы задумаемся над тем, с какими объектами работали первые механические предшественники современного электронного компьютера, то должны признать, что числа представлялись либо в виде линейных перемещений цепных и реечных механизмов, либо в виде угловых перемещений зубчатых и рычажных механизмов. И в том и в другом случае это были перемещения, что не могло не сказываться на габаритах устройств и на скорости их работы. Только переход от регистрации пере­мещений к регистрации сигналов позволил значительно снизить габариты и повысить быстродействие. Однако на пути к этому достижению потребовалось ввести еще несколько важных принципов и понятий.

Двоичная система Лейбница. В механических устройствах зубчатые колеса могут иметь достаточно много фиксированных и,главное, различных между собой положений. Количество таких положений, по крайней мере, равно числу зубьев шесте­рни. В электрических и электронных устройствах речь идет не о регистрацииполо­жений элементов конструкции, а о регистрациисостояний элементов устройства. Таких устойчивых иразличимых состояний всего два: включен - выключен; открыт - закрыт; заряжен - разряжен и т. п. Поэтому традиционная десятичная система, использованная в механических калькуляторах, неудобна для электронных вычис­лительных устройств.

Возможность представления любых чисел (да и не только чисел) двоичными цифрами впервые была предложена Готфридом Вильгельмом Лейбницем в 1666 году Он пришел к двоич­ной системе счисления, занимаясь исследова­ниями философской концепции единства и борьбы противоположностей. Попытка пред­ставить мироздание в виде непрерывного вза­имодействия двух начал («черного» и «белого», мужского и женского, добра и зла) и приме­нить к его изучению методы «чистой» матема­тики подтолкнули Лейбница к изучению свойств двоичного представления данных. Надо сказать, что Лейбницу уже тогда приходила в голову мысль о возможности использования дво­ичной системы в вычислительном устройстве, но, поскольку для механических устройств в этом не было никакой необходимости, он не стал использовать в своем калькуляторе (1673 году) принципы двоичной системы.

Математическая логика Джорджа Буля, Говоря о творчестве Джорджа Буля, иссле­дователи истории вычислительной техники непременно подчеркивают, что этот выдающийся английский ученый первой половины XIX века был самоучкой. Воз­можно, именно благодаря отсутствию «классического» (в понимании того времени) образования Джордж Буль внес в логику как в науку революционные изменения.

Занимаясь исследованием законов мышления, он применил в логике систему фор­мальных обозначений и правил, близкую к математической. Впоследствии эту систему назвали логической алгеброй илибулевой алге­брой. Правила этой системы применимы к самым разнообразным объектам и их группам(множе­ствам, по терминологии автора). Основное назна­чение системы, по замыслу Дж. Буля, состояло в том, чтобы кодировать логические высказывания и сводить структуры логических умозаключений к простым выражениям, близким по форме к мате­матическим формулам. Результатом формального расчета логического выражения является одно из двух логических значений:истина илиложь.

Значение логической алгебры долгое время игнори­ровалось, поскольку ее приемы и методы не содер­жали практической пользы для науки и техники того времени. Однако, когда появилась принципиальная возможность создания средств вычислительной техники на электронной базе, операции, введенные Булем, оказались весьма полезны. Они изначально ориентированы на работу только с двумя сущностями: истина иложь. Нетрудно понять, как они пригодились для работы с двоичным кодом, который в современных компьютерах тоже представляется всего двумя сигналами:ноль иединица.

Не вся система Джорджа Буля (как и не все предложенные им логические опера­ции) были использованы при создании электронных вычислительных машин, но четыре основные операции: И (пересечение), ИЛИ(объединение), НЕ(обращение) и ИСКЛЮЧАЮЩЕЕ ИЛИ - лежат в основе работы всех видов процессоров совре­менных компьютеров.

Рис. 3.1. Основные операции логической алгебры

Понятие вычислительной системы

Конкретный набор взаимодействующих между собой устройств и программ, предназначенный для обслуживания одного рабочего участка, называется вычислительной системой .

Совокупность устройств, предназначенных для автоматической или автоматизированной обработки данных, называется вычислительной техникой или аппаратными средствами . Состав вычислительной системы называется конфигурацией . Аппаратные и программные средства вычислительной системы принято рассматривать раздельно.

Критериями выбора аппаратного и программного решения является производительность и эффективность .

Центральное устройство вычислительной системы – компьютер. Компьютер – это электронный прибор, предназначенный для автоматизации создания, хранения, обработки и транспортирования данных. Хотя аппаратные и программные средства рассматриваются раздельно, следует отметить, что эти средства вычислительной системы работают в неразрывной связи и в непрерывном взаимодействии.

История развития вычислительной техники. Поколения ЭВМ.

(Предлагается студентам для самостоятельного изучения).

Классификация ЭВМ

Массовость использования ПК не должно заслонить тот факт, что кроме ПК есть и другие многократно более мощные вычислительные системы:

· суперкомпьютеры;

· большие ЭВМ (мэйнфреймы);

· миникомпьютеры;

· микрокомпьютеры (к ним относят персональные ПК).

Эти ЭВМ отличаются:

· производительностью;

· размерами;

· функциональным назначением.

Архитектура и структура ЭВМ

При рассмотрении компьютерных устройств принято различать их архитектуру и структуру.

Архитектурой компьютера называется его описание на некотором общем уровне, включающее описание пользовательских возможностей программирования, системы команд, системы адресации, организации памяти и т.д. Архитектура определяет принципы действия, информационные связи и взаимное соединение основных логических узлов компьютера: процессора, оперативного ЗУ, внешних ЗУ и периферийных устройств. Общность архитектуры разных компьютеров обеспечивает их совместимость с точки зрения пользователя.

Структура компьютера - это совокупность его функциональных элементов и связей между ними. Элементами могут быть самые различные устройства - от основных логических узлов компьютера до простейших схем. Структура компьютера графически представляется в виде структурных схем, с помощью которых можно дать описание компьютера на любом уровне детализации.

Классическая архитектура (архитектура фон Неймана) - одно арифметико-логическое устройство (АЛУ), через которое проходит поток данных, и одно устройство управления (УУ), через которое проходит поток команд - программа. Это однопроцессорный компьютер . К этому типу архитектуры относится и архитектура персонального компьютера с общей шиной . Все функциональные блоки здесь связаны между собой общей шиной, называемой также системной магистралью. Физически магистраль представляет собой многопроводную линию с гнездами для подключения электронных схем. Совокупность проводов магистрали разделяется на отдельные группы: шину адреса, шину данных и шину управления.

Относительно недавно в обиходе появился термин «вычислительная техника». Это обозначение изначально совершено не подразумевало всех тех аспектов, которые вкладываются в него сегодня. И, к сожалению, большинство людей почему-то считают, что компьютеры и вычислительная техника - слова-синонимы. Это явное заблуждение.

Вычислительная техника: значение слова

Трактовать значение этого термина можно совершенно по-разному, тем более что разные словари толковать его могут в различных интерпретациях.

Однако если подойти к вопросу как бы с неким обобщением, можно смело утверждать, что вычислительная техника - это технические устройства с набором неких математических средств, приемов и методов для автоматизации (или даже механизации) обработки какой-либо информации и процессов вычислений или описания того или иного явления (физического, механического и т. д.).

это что такое в широком понимании?

Вычислительная техника известна человечеству достаточно давно. Самыми примитивными устройствами, которые появились за сотни лет до нашей эры, можно назвать, например, те же китайские счеты или римский абак. Уже во второй половине нынешнего тысячелетия появились такие устройства, как шкала Неппера, арифмометр Шиккарда, счетная и т. д. Посудите сами, сегодняшние аналоги в виде калькуляторов тоже смело можно отнести к одной из разновидностей вычислительной техники.

Тем не менее трактовка этого термина приобрела более расширенное значение с появлением первых ЭВМ. Случилось это в 1946 году, когда в США была создана первая ЭВМ, обозначавшаяся аббревиатурой ЭНИАК (в СССР такое устройство было создано в 1950 году и носило название МЭСМ).

На сегодняшний день трактовка расширилась еще больше. Таким образом, на современном этапе развития технологий можно определить, что вычислительная техника - это:

  • компьютерные системы и средства управления сетями;
  • автоматизированные системы управления и обработки данных (информации);
  • автоматизированные средства проектирования, моделирования и прогнозирования;
  • системы разработки программного обеспечения и т.д.

Средства для вычислений

Теперь посмотрим, что собой представляют средства вычислительной техники. В основе любого процесса лежит информация или, как принято сейчас говорить, данные. Но понятие информации считается достаточно субъективным, поскольку для одного человека какой-то процесс может нести смысловую нагрузку, а для другого - нет. Таким образом, для унификации данных был разработан который воспринимается любой машиной и применяется для обработки данных наиболее широко.

Среди самих средств можно выделить технические устройства (процессоры, память, устройства ввода/вывода) и программное обеспечение, без которого все это «железо» оказывается совершенно бесполезным. Тут отдельно стоит отметить, что вычислительная система имеет ряд характерных признаков, например, целостность, организованность, связанность и интерактивность. Есть еще и так называемые вычислительные комплексы, которые относят к многопроцессорным системам, обеспечивающим надежность и повышенный уровень производительности, недоступный обычным однопроцессорным системам. И только в общей связке «железа» и софта можно говорить о том, что они и являются основными средствами вычислений. Естественно, можно сюда добавить и методики, по которым производится математическое описание того или иного процесса, но это может занять достаточно длительное время.

Устройство современных компьютеров

Исходя из всех этих определений, можно описать и работу современных компьютеров. Как уже было сказано выше, они сочетают в себе аппаратную и программную части, причем одна без другой функционировать не может.

Таким образом, современный компьютер (вычислительная техника) - это совокупность технических устройств, обеспечивающих функционирование программной среды для выполнения определенный задач, и наоборот (совокупность программ для работы «железа»). Наиболее правильным является первое утверждение, а не второе, ведь в конечном итоге этот набор нужен именно для обработки входящей информации и вывода результата.

(вычислительная техника) включает в себя несколько основных компонентов, без которых не обходится ни одна система. Сюда можно отнести материнские платы, процессоры, жесткие диски, оперативную память, мониторы, клавиатуры, мыши, периферию (принтеры, сканеры и т.д.), дисководы и др. В плане программного обеспечения первое место занимают операционные системы и драйверы. В операционных системах работают прикладные программы, а драйверы обеспечивают корректное функционирование всех «железных» устройств.

Несколько слов о классификации

Современные вычислительные системы можно классифицировать по нескольким критериям:

  • принцип действия (цифровые, аналоговые, гибридные);
  • поколения (этапы создания);
  • назначение (проблемно-ориентированные, базовые, бытовые, выделенные, специализированные, универсальные);
  • возможности и размеры (супербольшие, супермалые, одно- или многопользовательские);
  • условия применения (домашние, офисные, производственные);
  • другие признаки (количество процессоров, архитектура, производительность, потребительские свойства).

Как уже понятно, четких границ в определении классов провести нельзя. В принципе, любое разделение современных систем на группы все равно выглядит чисто условным.