Основные модели архитектуры распределенных систем. Архитектура распределенных систем. Парадигма распределенных вычислений

(Материал сайта http://se.math.spbu.ru)

Введение.

В настоящее время практически все большие программные системы являются распределенными. Распределенная система - система, в которой обработка информации сосредоточена не на одной вычислительной машине, а распределена между несколькими компьютерами. При проектировании распределенных систем, которое имеет много общего с проектированием ПО в общем, все же следует учитывать некоторые специфические особенности.

Существует шесть основных характеристик распределенных систем.

  1. Совместное использование ресурсов. Распределенные системы допускают совместное использование как аппаратных (жестких дисков, принтеров), так и программных (файлов, компиляторов) ресурсов.
  2. Открытость. Это возможность расширения системы путем добавления новых ресурсов.
  3. Параллельность. В распределенных системах несколько процессов могут одновременно выполнятся на разных компьютерах в сети. Эти процессы могут взаимодействовать во время их выполнения.
  4. Масштабируемость . Под масштабируемостью понимается возможность добавления новых свойств и методов.
  5. Отказоустойчивость. Наличие нескольких компьютеров позволяет дублирование информации и устойчивость к некоторым аппаратным и программным ошибкам. Распределенные системы в случае ошибки могут поддерживать частичную функциональность. Полный сбой в работе системы происходит только при сетевых ошибках.
  6. Прозрачность. Пользователям предоставляется полный доступ к ресурсам в системе, в то же время от них скрыта информация о распределении ресурсов по системе.

Распределенные системы обладают и рядом недостатков.

  1. Сложность . Намного труднее понять и оценить свойства распределенных систем в целом, их сложнее проектировать, тестировать и обслуживать. Также производительность системы зависит от скорости работы сети, а не отдельных процессоров. Перераспределение ресурсов может существенно изменить скорость работы системы.
  2. Безопасность . Обычно доступ к системе можно получить с нескольких разных машин, сообщения в сети могут просматриваться и перехватываться. Поэтому в распределенной системе намного труднее поддерживать безопасность.
  3. Управляемость . Система может состоять из разнотипных компьютеров, на которых могут быть установлены различные версии операционных систем. Ошибки на одной машине могут распространиться непредсказуемым образом на другие машины.
  4. Непредсказуемость . Реакция распределенных систем на некоторые события непредсказуема и зависит от полной загрузки системы, ее организации и сетевой нагрузки. Так как эти параметры могут постоянно изменятся , поэтому время ответа на запрос может существенно отличаться от времени.

Из этих недостатков можно увидеть, что при проектировании распределенных систем возникает ряд проблем, которые надо учитывать разработчикам.

  1. Идентификация ресурсов . Ресурсы в распределенных системах располагаются на разных компьютерах, поэтому систему имен ресурсов следует продумать так, чтобы пользователи могли без труда открывать необходимые им ресурсы и ссылаться на них. Примером может служить система URL(унифицированный указатель ресурсов), которая определяет имена Web-страниц.
  2. Коммуникация . Универсальная работоспособность Internet и эффективная реализация протоколов TCP/IP в Internet для большинства распределенных систем служат примером наиболее эффективного способа организации взаимодействия между компьютерами. Однако в некоторых случаях, когда требуется особая производительность или надежность, возможно использование специализированных средств.
  3. Качество системного сервиса . Этот параметр отражает производительность, работоспособность и надежность. На качество сервиса влияет ряд факторов: распределение процессов, ресурсов, аппаратные средства и возможности адаптации системы.
  4. Архитектура программного обеспечения . Архитектура ПО описывает распределение системных функций по компонентам системы, а также распределение этих компонентов по процессорам. Если необходимо поддерживать высокое качество системного сервиса, выбор правильной архитектуры является решающим фактором.

Задача разработчиков распределенных систем - спроектировать программное и аппаратное обеспечение так, чтобы предоставить все необходимые характеристики распределенной системы. А для этого требуется знать преимущества и недостатки различных архитектур распределенных систем. Выделяется три типа архитектур распределенных систем.

  1. Архитектура клиент/сервер . В этой модели систему можно представить как набор сервисов, предоставляемых серверами клиентам. В таких системах серверы и клиенты значительно отличаются друг от друга.
  2. Трехзвенная архитектура . В этой модели сервер предоставляет клиентам сервисы не напрямую, а посредством сервера бизнес-логики .

Про первые две модели было сказано уже не раз, остановимся подробнее на третьей.

  1. Архитектура распределенных объектов . В этом случае между серверами и клиентами нет различий и систему можно представить как набор взаимодействующих объектов, местоположение которых не имеет особого значения. Между поставщиком сервисов и их пользователями не существует различий.

Эта архитектура широко применяется в настоящее время и носит также название архитектуры веб-сервисов . Веб-сервис - это приложение, доступное через Internet и предоставляющее некоторые услуги, форма которых не зависит от поставщика (так как используется универсальный формат данных - XML) и платформы функционирования. В данное время существует три различные технологии, поддерживающие концепцию распределенных объектных систем. Это технологии EJB, CORBA и DCOM.

Для начала несколько слов о том, что такое XML вообще. XML - универсальный формат данных, который используется для предоставления Web-сервисов. В основе Web-сервисов лежат открытые стандарты и протоколы: SOAP, UDDI и WSDL.

  1. SOAP (Simple Object Access Protocol ), разработанный консорциумом W3C, определяет формат запросов к Web-сервисам. Сообщения между Web-сервисом и его пользователем пакуются в так называемые SOAP-конверты (SOAP envelopes , иногда их ещё называют XML-конвертами). Само сообщение может содержать либо запрос на осуществление какого-либо действия, либо ответ - результат выполнения этого действия.
  2. WSDL (Web Service Description Language). Интерфейс Web-сервиса описывается в WSDL-документах (а WSDL - это подмножество XML). Перед развертыванием службы разработчик составляет ее описание на языке WSDL, указывает адрес Web-сервиса, поддерживаемые протоколы, перечень допустимых операций, форматы запросов и ответов.
  3. UDDI (Universal Description, Discovery and Integration) - протокол поиска Web- сервисов в Internet (http://www.uddi.org/ ). Представляет собой бизнес-реестр, в котором провайдеры Web-сервисов регистрируют службы, а разработчики находят необходимые сервисы для включения в свои приложения.

Из доклада может показаться, что Web-сервисы - наилучшее и безальтернативное решение, и вопрос только в выборе средств разработки. Однако это не так. Альтернатива Web-службам существует, это семантический Web (Semantic Web ), о необходимости создания которого уже пять лет назад говорил создатель WWW Тим Бернерс-Ли .

Если задача Web-сервисов - облегчить коммуникацию между приложениями, то семантический Web призван решить гораздо более сложную проблему - с помощью механизмов метаданных повысить эффективность ценность информации, которую можно найти в Сети. Сделать это можно, отказавшись от документно-ориентированного подхода в пользу объектно-ориентированного.

Список литературы

  1. Соммервилл И. Инженерия программного обеспечения.
  2. Драница А. Java против.NET. - "Компьютерра ", #516.
  3. Ресурсы интернет.

AggreGate является одной из немногих в мире IoT-платформ, которые действительно поддерживают распределенную архитектуру. Это обеспечивает неограниченную масштабируемость для балансировки и разделения всех операций серверов AggreGate на различных уровнях. Такая архитектура может быть основой как для решения текущих задач, так и для обеспечения потребностей в будущем.

В отличие от отказоустойчивого кластера , серверы AggreGate в распределенной архитектуре полностью независимы. Каждый сервер имеет свою собственную базу данных, аккаунты локальных пользователей и связанные с ними разрешения.

Распределенная архитектура AggreGate необычайно гибка. Технически она основана на формировании одноранговых связей между серверами и прикреплении частей единой модели данных одних серверов («поставщиков») к другим («потребителям»).

Цели распределенных операций

Основными целями распределенной архитектуры являются:

  • Масштабируемость . Серверы нижнего уровня могут быть сильно нагружены, собирая данные и управляя большим количеством устройств в режиме, близком к реальному времени. Однако на практике количество устройств, которые могут обслуживаться с помощью одного сервера, ограничено до нескольких тысяч. При масштабировании системы для управления большим числом устройств разумно установить несколько серверов и объединить их в рамках распределенной установки.
  • Балансировка нагрузки . Каждый сервер в распределенной установке решает свою задачу. Серверы управления сетью проверяют доступность и производительность сетевой инфраструктуры, серверы контроля доступа обрабатывают запросы от контроллеров дверей и турникетов. Операции контроля, такие как генерация отчетов и их рассылка по почте, могут выполняться на центральном сервере.
  • Защита от вторжений . Вторичные серверы-зонды могут быть установлены в удаленных местах и подключены к центральному серверу. Системные операторы подключаются только к центральному серверу, при этом отпадает необходимость в настройке VPN и проброса портов к этим серверам.
  • Централизация . Вторичные серверы могут работать в полностью автоматическом режиме, в то время как их настройка и мониторинг осуществляется через основной сервер, установленный в центральной диспетчерской.

Распределение ролей сервера

В данном простом сценарии два сервера объединены в распределённую инфраструктуру. Операторы системы постоянно подключены к серверу мониторинга, выполняя свои ежедневные обязанности. Руководство компании подключается к серверу отчётности и аналитики тогда, когда нужно получить срез данных. Независимо от объёмов данных и нагрузки на сервер, данная операция не повлияет на работу операторов.

Крупномасштабная облачная IoT-платформа

Поставщики телекоммуникационных и облачных услуг предлагают IoT-сервисы по моделям IaaS/PaaS/SaaS. В этих случаях речь идёт о миллионах устройств, принадлежащих тысячам пользователей. Обслуживание такой огромной инфраструктуры требует сотни серверов AggreGate, большинство из которых можно объединить в две группы:

  • Серверы, хранящие реестр пользователей и их устройств, перенаправляющие подключения операторов и устройств на серверы нижнего уровня, а также агрегирующие данные для последующего анализа информации с участием серверов нижнего уровня
  • Серверы, осуществляющие мониторинг и управление устройствами, а также получение, хранение и обработку данных

Серверы управления пользователями и устройствами также отвечают за взаимодействие с облачной системой управления, которая занимается развертыванием новых серверов хранения данных и аналитики, а также контролирует их работу.

Серверы хранения и обработки данных используют ресурсы (тревоги, модели, рабочие процессы, инструментальные панели и т.д.), полученные от серверов шаблонов, которые в свою очередь хранят мастер-копии данных ресурсов.

Многоуровневая инфраструктура Интернета вещей

Благодаря распределённой инфраструктуре AggreGate любое решение может включать в себя множество серверов разных уровней. Часть из них может работать на IoT-шлюзах, собирая данные, другие - хранить и обрабатывать информацию, а оставшаяся часть - осуществлять высокоуровневую агрегацию и распределённые вычисления.

Полевое оборудование, такое как сенсоры и актуаторы, может быть подключено к серверам напрямую, через агенты, через шлюзы или с помощью их комбинации.

Управление умным городом

Это пример основанной на AggreGate многоуровневой архитектуры для комплексной автоматизации большой группы зданий:

  • Уровень 1 : физическое оборудование (сетевые маршрутизаторы, контроллеры, промышленное оборудование и т.д.)
  • Уровень 2 : серверы управления (серверы мониторинга сети, серверы контроля доступа, серверы автоматизации зданий и другие)
  • Уровень 3 : центры управления серверами зданий (один сервер на здание, который собирает информацию со всех серверов второго уровня)
  • Уровень 4 : серверы районов города (конечный пункт назначения для эскалации оповещений более низкого уровня, мониторинг в реальном времени, интеграция с Service Desk-системами)
  • Уровень 5 : серверы головного офиса (контроль серверов района, сбор и обобщение отчетов, оповещений)

Любой из вышеуказанных серверов может представлять собой отказоустойчивый кластер, состоящий из нескольких узлов.

Управление мультисегментной сетью

AggreGate Network Manager построен на платформе AggreGate и является типичным примером использования распределенной архитектуры. Большие сегментированные сети корпораций и операторов связи не могут контролироваться из единого центра из-за ограничений маршрутизации, политики безопасности или ограничений пропускной способности каналов связи с удаленными сегментами сети.

Таким образом, распределенная система мониторинга как правило состоит из следующих компонентов:

  • Первичный или центральный сервер, собирающий информацию со всех сегментов сети
  • Вторичные серверы или серверы-зонды , выполняющие опрос устройств в изолированных сегментах
  • Специализированные серверы, такие как серверы анализа трафика, обрабатывающие миллиарды NetFlow-событий в день

Вторичные и специализированные серверы являются поставщиками информации для основного сервера, предоставляя часть своей модели данных центру управления. Это может быть:

  • Все содержание дерева контекстов сервера-зонда, что позволяет полностью контролировать конфигурацию с центрального сервера. В этом случае сервер-зонд просто используется в качестве прокси для преодоления проблемы сегментации сети.
  • Предупреждения, создаваемые сервером-зондом. В этом случае 99% рабочих мест могут быть удаленными, и оператор центрального сервера незамедлительно будет получать уведомления со вторичных серверов.
  • Пользовательские наборы данных с серверов-зондов, такие как оперативная информация о состоянии критически важных устройств или обобщённые отчеты. Вся связанная с этим работа будет выполнена на вторичном сервере, позволяя распределить нагрузку.

Высокопроизводительное управление событиями

Некоторые сценарии использования платформы AggreGate, такие как централизованное управление инцидентами, предполагают, что значительное количество событий должно получаться, обрабатываться и постоянно храниться в структурированном формате. Порой потоки могут достигать объёмов в миллионы событий в секунду, причём полученных из разных источников.

В подобных случаях один сервер AggreGate не справится со всем потоком событий. Организовать обработку событий поможет распределенная архитектура:

  • На генерирующих события объектах устанавливается несколько локальных серверов, обрабатывающих эти события. Несколько источников (зондов) могут подключаться к одному обрабатывающему серверу.
  • Выделенный сервер хранения или мультисерверный кластер хранения больших данных привязывается к каждому локальному серверу обработки. Количество узлов кластера может варьироваться в зависимости от скорости генерации событий.
  • Все локальные серверы хранения выполняют префильтрацию, дедупликацию, корреляцию (используя правила, применимые к локально подключаемым зондам), обогащение и хранение событий.
  • Локальные серверы хранения подключаются к центральному серверу агрегирования. Сервер агрегирования отвечает за корреляцию важных событий всей системы.
  • Операторы центрального сервера могут просматривать всю базу данных событий, при этом задачи поиска актуальных данных распределяются между серверами хранения. Таким образом, возможно создать централизованные отчетность и оповещения на основе базы данных по всем событиям.

Цифровое предприятие

AggreGate может выступать как координирующая платформа для цифрового предприятия. Каждый из серверов AggreGate может выполнять различные функции, начиная от мониторинга и управления удалёнными объектами и заканчивая высокоуровневыми сервисами, такими как бизнес-аналитика или, например, управление инцидентами.

Все серверы цифрового предприятия подключены друг к другу через распределённую инфраструктуру. Серверы нижнего уровня предоставляют доступ к части контекстов единой модели данных серверам верхнего уровня, позволяя создать ситуационный центр для целого предприятия.

В крупных холдингах работают десятки тысяч пользователей в дочерних компаниях. В каждой организации налажены свои внутренние бизнес-процессы: согласование документов, выдача поручений и т.д. При этом некоторые процессы выходят за пределы одной компании и затрагивают сотрудников другой. Например, руководитель головного офиса выдает поручение в дочернюю организацию, или сотрудник дочерней отправляет договор на согласование с юристами головной компании. Это требует создания сложной архитектуры с использованием нескольких систем.

Кроме того, в пределах одной компании используется множество систем для решения разных задач: ERP-система для учетных операций, отдельные инсталляции ЕСМ-систем для организационно-распорядительной документации, для проектно-сметной документации и т.д.

Обеспечить взаимодействие разных систем как внутри холдинга, так и на уровне одной организации, поможет система DIRECTUM.

DIRECTUM предоставляет удобные инструменты для построения управляемой распределенной архитектуры организации и решения следующих задач:

  • организация сквозных бизнес-процессов и синхронизация данных между несколькими системами одной компании и в холдинге;
  • обеспечение доступа к данным разных инсталляций ECM-систем. Например, выполнить поиск документа по нескольким специализированным системам: с финансовой документацией, с проектно-сметной документацией и пр.
  • администрирование множества систем и сервисов из единой точки управления и создание комфортной IT-инфраструктуры;
  • удобное распространение разработки в распределенные продуктивные системы.

Компоненты управляемой распределенной архитектуры

Механизмы межсистемного взаимодействия (DCI)

Механизмы DCI используются для организации сквозных бизнес-процессов и синхронизации данных между разными системами внутри одной или нескольких организаций (холдинга).


Решение соединяет существующие в компаниях локальные бизнес-процессы в единый сквозной процесс. Сотрудники и их руководители работают с уже знакомым интерфейсом задач, документов и справочников. При этом действия сотрудников прозрачны на каждом этапе: они могут видеть текст переписки со смежной компанией, посмотреть состояние согласования документа с головной организацией и пр.

К DCI можно подключать разные инсталляции DIRECTUM и другие классы систем (ERP, CRM и пр.). Как правило, инсталляции делятся по направлениям бизнеса, с учетом территориального или юридического размещения организаций и других факторов.

Вместе с DCI поставляются компоненты разработки с подробным описанием и примерами кода, благодаря которым разработчик может создать алгоритм под бизнес-процессы своей организации.

Механизмы DCI позволяют передавать большие объемы данных и выдерживают пиковые нагрузки. Кроме того, они обеспечивают отказоустойчивость при сбое связи и защиту передаваемых данных.

Федеративный поиск

С помощью федеративного поиска можно найти нужные задачи или документы сразу во всех отдельных системах DIRECTUM. Например, запустить поиск одновременно по рабочей системе и по системе с архивными документами.


Федеративный поиск позволяет:

  • посмотреть через веб-клиент ход согласования исходящего документа в дочерней организации;
  • найти договоры, заключенные с контрагентом во всех дочерних организациях, например, для подготовки переговоров. При этом можно перейти к задачам, в которые вложены договоры;
  • проверить статус исполнения поручения, отправленного из головной организации в дочернюю, или документы и задачи, созданные по нему;
  • найти документы одновременно в нескольких системах с разной специализацией, например, с организационно-распорядительными документами и с договорами;
  • найти первичные учетные документы для аудита или сверки с контрагентом сразу в рабочей системе и в системе с архивом документов;
  • обменяться ссылками на результаты поиска с коллегами.

Администратор может изменять стандартные поиски, добавлять новые, а также настраивать, какие системы будут видны пользователю.

Центр администрирования служб DIRECTUM

Система DIRECTUM решает множество разных задач: взаимодействие сотрудников, хранение документов и др. Это возможно благодаря надежной работе ее служб. А в крупных компаниях выделяют целые инсталляции системы DIRECTUM со своим набором служб под конкретную задачу, например, под хранение архивных документов. Инсталляции и службы разворачивают на нескольких серверах. Эту инфраструктуру необходимо администрировать.

Центр администрирования служб DIRECTUM — это единая точка входа администратора для конфигурирования, мониторинга и управления службами и системами DIRECTUM. Центр представляет собой сайт с инструментами управления сервером сеансов, службой Workflow, службой обработки событий, службой файловых хранилищ , службами ввода и преобразования , федеративным поиском и веб-справкой.


Удобная визуальная настройка удаленных систем и служб упрощает работу администратора. Ему не нужно заходить на каждый сервер и вручную вносить изменения в конфигурационные файлы.

Службы останавливаются и включаются в один клик. Состояние служб моментально отображается на экране.

Список настроек можно пополнять и фильтровать. По умолчанию сайт отображает только основные настройки. При этом для всех настроек можно посмотреть подсказки с рекомендациями по заполнению.

Система DIRECTUM эффективно организует работу распределенных организаций и обеспечивает пользователям прозрачный обмен документами, задачами и записями справочников.

Каждый компонент управляемой распределенной архитектуры можно использовать отдельно, но в совокупности они принесут вашей организации больший бизнес-эффект.

По утверждению известного специалиста в области информатики Э. Таненбаума, не существует общепринятого и в то же время строгого определения распределенной системы. Некоторые остряки утверждают, что распределенной является такая вычислительная система , в которой неисправность компьютера, о существовании которого пользователи ранее даже не подозревали, приводит к остановке всей их работы. Значительная часть распределенных вычислительных систем, к сожалению, удовлетворяют такому определению, однако формально оно относится только к системам с уникальной точкой уязвимости (single point of failure ).

Часто при определении распределенной системы во главу угла ставят разделение ее функций между несколькими компьютерами. При таком подходе распределенной является любая вычислительная система , где обработка данных разделена между двумя и более компьютерами. Основываясь на определении Э. Таненбаума, несколько более узко распределенную систему можно определить как набор соединенных каналами связи независимых компьютеров, которые с точки зрения пользователя некоторого программного обеспечения выглядят единым целым.

Такой подход к определению распределенной системы имеет свои недостатки. Например, все используемое в такой распределенной системе программное обеспечение могло бы работать и на одном единственном компьютере, однако с точки зрения приведенного выше определения такая система уже перестанет быть распределенной. Поэтому понятие распределенной системы, вероятно, должно основываться на анализе образующего такую систему программного обеспечения.

Как основу описания взаимодействия двух сущностей рассмотрим общую модель взаимодействия клиент- сервер , в которой одна из сторон (клиент) инициирует обмен данными, посылая запрос другой стороне (серверу). Сервер обрабатывает запрос и при необходимости посылает ответ клиенту (рис. 1.1).


Рис. 1.1.

Взаимодействие в рамках модели клиент сервер может быть как синхронным, когда клиент ожидает завершения обработки своего запроса сервером, так и асинхронным, при котором клиент посылает серверу запрос и продолжает свое выполнение без ожидания ответа сервера. Модель клиента и сервера может использоваться как основа описания различных взаимодействий. Для данного курса важно взаимодействие составных частей программного обеспечения, образующего распределенную систему.


Рис. 1.2.

Рассмотрим некое типичное приложение , которое в соответствии с современными представлениями может быть разделено на следующие логические уровни (рис. 1.2): пользовательский интерфейс (ИП), логика приложения (ЛП) и доступ к данным (ДД), работающий с базой данных ( БД ). Пользователь системы взаимодействует с ней через интерфейс пользователя, база данных хранит данные, описывающие предметную область приложения, а уровень логики приложения реализует все алгоритмы, относящиеся к предметной области .

Поскольку на практике разных пользователей системы обычно интересует доступ к одним и тем же данным, наиболее простым разнесением функций такой системы между несколькими компьютерами будет разделение логических уровней приложения между одной серверной частью приложения, отвечающим за доступ к данным, и находящимися на нескольких компьютерах клиентскими частями, реализующими интерфейс пользователя. Логика приложения может быть отнесена к серверу, клиентам, или разделена между ними (рис. 1.3).


Рис. 1.3.

Архитектуру построенных по такому принципу приложений называют клиент серверной или двухзвенной. На практике подобные системы часто не относят к классу распределенных, но формально они могут считаться простейшими представителями распределенных систем.

Развитием архитектуры клиент- сервер является трехзвенная архитектура , в которой интерфейс пользователя, логика приложения и доступ к данным выделены в самостоятельные составляющие системы, которые могут работать на независимых компьютерах (рис. 1.4).


Рис. 1.4.

Запрос пользователя в подобных системах последовательно обрабатывается клиентской частью системы, сервером логики приложения и сервером баз данных. Однако обычно под распределенной системой понимают системы с более сложной архитектурой, чем трехзвенная.

В настоящее время все разрабатываемые в коммерческих целях ИС имеют распределенную архитектуру, которая подразумевает использование глобальных и/или локальных сетей.

Исторически первыми получила широкое распространение файл-серверная архитектура, поскольку ее логика проста и перевести на такую архитектуру уже находящиеся в эксплуатации ИС –проще всего. Затем она была трансформирована в архитектуру сервер-клиент, которую можно трактовать как ее логическое продолжение. Современные системы, используемые в глобальной сети INTERNET в основном относятся к архитектуре распределенных объектов (см. Рис. III 15 )


ИС можно представить состоящую из следующих составных частей (Рис. III‑16)

III.03.2. a Файл-серверные приложения.

Это исторически первая распределенная архитектура (Рис. III‑17). Организуется она предельно просто: на сервере находятся только данные, а все остальное относится к клиентской машине. Поскольку локальные сети достаточно дешевы, и в силу того, что при такой архитектуре прикладное ПО автономно, такая архитектура достаточно часто используется и сейчас. Можно сказать, что это вариант клиент-серверной архитектуры, при которой на сервере находятся только файлы данных. Разные персональные компьютеры взаимодействуют только по средствам общего хранилища данных, поэтому программы, написанные в расчете на один компьютер проще всего адаптировать под такую архитектуру.


Плюсы:

Плюсы файл-серверной архитектуры:

Простота организации;

Не противоречит необходимым требованиям к БД к поддержанию целостности и надежности.

Перегрузка сети;

Непредсказуемость реакции на запрос.

Эти недостатки объясняются тем, что любой запрос к БД приводит к перекачке по сети к значительным объемам информации. Например, для выборки из таблиц одной или нескольких строк перекачивается вся таблица на клиентскую машину и уже там СУБД производит выборку. Значительный сетевой трафик особенно чреват при организации удаленного доступа к БД.

III.03.2. b Клиент-серверные приложения.

В данном случае имеет место распределение обязанностей между сервером и клиентом. В зависимости от того, как они разделены различают толстого и тонкого клиента .


В модели «тонкий клиент” вся работа приложения и управление данны­ми выполняются на сервере. Пользовательский интерфейс в этих системах "переселяется" на персональный компьютер, а само программное приложение выполняет функции сервера, т.е. выполняет все процессы приложения и управляет данными. Модель тонкого клиента можно также реализовать там, где клиенты компьютеры или рабочие станции. Сетевые устройства запускают Internet-броузер и пользовательский интерфейс, реализованный внутри системы.

Главный недостаток модели тонкого клиента - большая загруженность сервера и сети. Все вычисления выполняются а сервере, а это может привести к значительному сетевое трафику между клиентом и сервером. В современных компьютерах достаточно вычислительной мощности, но она практически не используется в модель/тонкого клиента банка

Напротив, модель толстого клиента использует вычислительную мощность локальных машин: само приложение помещаются на клиентский компьютер. Примером архитектуры такого типа могут служить системы банкоматов, в которых банкомат является клиентом, а сервер -центральным компьютером, обслуживающим базу данных по расчетам с клиентами

III.03.2. c Двух- и трехуровневые архитектура клиент-сервер.

Все рассмотренные выше архитектуры являются двухуровневыми. В них различается уровень клиента и уровень сервера. Строго говоря, ИС состоит из трех логических уровней:

· Уровень пользователя;

· Уровень приложения:

· Уровень данных.

Поэтому в двухуровневой модели, где задействованы только два уровня, возникает проблема с масштабируемостью и производительностью, если выбрана модель тонкий клиент, либо проблемы связанные с управлением системы, если взята модель толстый клиент. Избежать этих проблем можно, если применять модель, состоящую из трех уровней, где два из них сервера(Рис. III‑21).

Сервер данных

Фактически сервер приложения и сервер данных могут располагаться на одной машине, но выполнять функции друг друга они не могут. Трехуровневая модель хороша тем, что в ней логически разделены выполнение приложения и управление данными.

Таблица III‑5 Применение разных типов архитектур

Архитектура Приложение
Двухуровневая тонкий клиент 1 Наследуемые системы, в которых не целесообразно разделять выполнение приложения и управление данными. 2 Приложения с интенсивными вычислениями, но малыми объемами управления данными. 3 Приложения с большими объемами данных, но малым количеством вычислений.
Двухуровневый толстый клиент 1 Приложения, где пользователю требуется интенсивная обработка данных, то есть визуализация данных. 2 Приложения с относительно постоянным набором функций пользователя, применяемых к среде с хорошо отлаженным системным управлением.
Трехуровневый сервер-клиент 1 Большие приложения с сотами и тысячами клиентов 2 Приложения, в которых часто меняются и данные и методы их обработки. 3 Приложения, в которых выполняются интеграции данных из многих источников.

Такая модель подходит многим типам приложений, но ограничивает разработчиков ИС, которые должна решать, где предоставить сервисы, обеспечивать поддержку масштабируемости, разрабатывать средства для подключения новых клиентов.

III.03.2. d Архитектура распределенных объектов.

Более общий подход обеспечивает архитектура распределенных объектов, основными компонентами которой являются объекты. Они предоставляют набор услуг через свои интерфейсы. Другие объекты посылают запросы, при этом не делается различий между клиентом и сервером. Объекты могут располагаться на разных компьютерах в сети и взаимодействовать по средствам промежуточного ПО, по аналогии системной шины, которая позволяет подключать различные устройства и поддерживать взаимодействие между аппаратными устройствами.

Диспетчер драйвер ODBC
Драйвер 1
Драйвер К
БД 1
БД К
Работа с SQL

Архитектура ODBC включает компоненты:

1. Приложение (например, ИС). Оно выполняет задачи: запрашивает соединение с источником данных, посылает SQL – запросы к источнику данных, описывает область хранения и формат для SQL – запросов, обрабатывает ошибки и оповещает о них пользователя, осуществляет фиксацию или откат транзакций, запрашивает соединение с источником данных.

2. Диспетчер устройств. Он загружает драйвера по требованию приложений, предлагает единый интерфейс всем приложениям, причем интерфейс администратора ODBC одинаков и независим то того, с какой СУБД приложение будет взаимодействовать. Диспетчер драйверов, поставляемый Microsoft, является динамически загружаемой библиотекой DLL.

3. Драйвер зависит от СУБД. Драйвер ODBC – это динамическая библиотека DLL, которая реализует функции ODBC и взаимодействует с источником данных. Драйвер – это программа, которая обрабатывает запрос какой-то функции специфично для СУБД (может модифицировать запросы в соответствии с СУБД) и возвращает результат приложению. Каждая СУБД, поддерживающая технологию ODBC, должна предоставить разработчикам приложений драйвер для этой СУБД.

4. Источник данных содержит управляющую информацию, задаваемую пользователем, информацию об источнике данных и используется для доступа к конкретной СУБД. При этом используются средства ОС и сетевой платформы.

Динамическая модель

Эта модель предполагает много аспектов, для представления которых на языке UML используется как минимум 5 диаграмм см. пп. 2.04.2- 2.04.5.

Рассмотрим аспект управления. Модель управления дополняет структурные модели.

Каким бы образом не была описана структура системы, она состоит из набора структурных единиц (функций или объектов). Чтобы они функционировали как единое целое, ими надо управлять, а информация по управлению отсутствует в статических диаграммах. В моделях управления проектируется поток управления между системами.

Можно выделить два основных типа управления в программных системах.

1. Централизованное управление.

2. Управление, основанное на событиях.

Централизованное управление может быть:

· Иерархическим - по принципу «вызов-возврат» (именно так чаще всего работает учебные программы)

· Модель диспетчера , которая применяется для параллельных систем.

В модели диспетчера предполагается, что один из компонентов системы – диспетчер. Он управляет как запуском, так и завершением систем и координацией остальных процессов системы. Процессы могут работать параллельно друг другу. Под процессом понимается программа, подсистема или процедура, которая работает на данный момент. Эта модель может применяться также в последовательных системах, где управляющая программа вызывает отдельные подсистемы в зависимости от каких-то переменных состояния (через оператор case ).

Управление событиями предполагает отсутствие какой-либо подпрограммы ответственной за управление. Управление осуществляется внешними событиями: нажатие клавиши мыши, нажатие клавиатуры, изменения показания датчиков, изменения показания таймера ит.д. Каждое внешнее событие кодируется и помещается в очередь событий. Если реакция на событие в очереди предусмотрена, то вызывается та процедура (подпрограмма), которая и осуществляет реакцию на это событие. События, на которые реагирует система, могут происходить либо в других подсистемах, либо во внешнем окружении системы.

Примером такого управления является организация приложений в ОС Windows.

Все описанные ранее структурной модели можно реализовать с помощью централизованного управления или управления, основанного на событиях.

Пользовательский интерфейс

При разработки модели интерфейса следует учитывать не только задачи проектируемого ПО, но и особенности мозга, связанные с восприятием информации.

III.03.4. a Психофизические особенности человека, связанные с восприятием и обработкой информации.

Часть мозга, которую условно можно назвать процессором восприятия, постоянно, без участия сознания, перерабатывает поступающую информацию, сравнивает ее с прошлым опытом и помещает ее в хранилище.

Когда зрительный образ привлекает наше внимание, тогда интересующая нас информация поступает краткосрочную память. Если же наше внимание не было привлечено, то информация в хранилище пропадает, замещаясь следующими порциями.

В каждый момент времени фокус внимания может фиксироваться в одной точке, поэтому если возникает необходимость одновременного отслеживания нескольких ситуаций, то фокус перемещается с одного отслеживаемого объекта на другой. При этом внимание рассредоточивается, и какие-то детали могут быть упущены. Существенно и то, что восприятие во многом основано на мотивации.

При смене кадра мозг на некоторое время блокируется: он осваивает новую картинку, выделяя наиболее существенные детали. Это значит, что если необходима быстрая реакция пользователя, то резко менять картинки не стоит.

Краткосрочная память - самое узкое место в системе обработки информации человека. Ее емкость равна 7±2 несвязанных объекта. Невостребованная информация хранится в ней не более 30 секунд. Чтобы не забыть какую-нибудь важную для нас информацию, мы обычно повторяем ее про себя, обновляя информацию в краткосрочной памяти. Таким образом, при проектировании интерфейсов следует иметь в виду, что подавляющему большинству сложно, например, запомнить и ввести на другом экране числа, содержащие более пяти цифр.

Несмотря на то, что емкость и время хранения долгосрочной памяти неограниченны, доступ к информации весьма непрост. Механизм извлечения информации из долгосрочной памяти имеет ассоциативный характер. Для улучшения запоминания информации ее привязывают тем данным, которые память уже хранит и позволяет легко получить. Поскольку доступ к долгосрочной памяти затруднен, целесообразно рассчитывать не на то, что пользователь вспомнит информацию, а на то, что пользователь узнает ее.

III.03.4. b Основные критерии оценки интерфейсов

Многочисленные опросы и обследования, проводимые ведущими фирмами по разработке программного обеспечения, показали, что пользователи ценят в интерфейсе:

1)простоту освоения и запоминания - конкретно оценивают время освоения и продолжительность сохранения информации и памяти;

2)скорость достижения результатов при использовании системы, которая определяется количеством вводимых или выбираемых мышью команд и настроек;

3)субъективную удовлетворенность при эксплуатации системы (удобство работы, утомляемость и т. д.).

Причем для пользователей-профессионалов, постоянно работающих с одним и тем же пакетом, на первое место достаточно быстро выходят второй и третий критерии, а для пользователей-непрофессионалов, работающих с программным обеспечением периодически и выполняющих сравнительно несложные задачи - первый и третий.

С этой точки зрения на сегодняшний день наилучшими характеристиками для пользователей-профессионалов обладают интерфейсы со свободной навигацией, а для пользователей-непрофессионалов - интерфейсы прямого манипулирования. Давно замечено, что при выполнении операции копирования файлов при прочих равных условиях большинство профессионалов используют оболочки типа Far, а непрофессионалы - «перетаскивание объектов» Windows.

III.03.4. c Типы интерфейсов пользователя

Различают следующие типы пользовательских интерфейсов:

Примитивные

Со свободной навигацией

Прямого манипулирования.

Интерфейс примитивный

Примитивным называется интерфейс, который организует взаимодействие с пользователем и используется в консольном режиме. Единственное отклонение от последовательного процесса, который обеспечивается данными, заключается в организации цикла для обработки нескольких наборов данных.

Интерфейс Меню.

В отличие от примитивного интерфейса, позволяет пользователю выбирать операцию из специального списка, выводимого ему программой. Эти интерфейсы предполагают реализацию множества сценариев работы, последовательность действий в которых определяется пользователями. Древовидная организация меню предполагает, что поиск пункта более чем двух уровневого меню оказывается довольно сложной задачей.