Основным техническим устройством для обработки информации является. Технические средства обработки данных. Устройство ПК и их характеристики

1 Режимы обработки данных

При проектировании технологических процессов ориентируются на режимы их реализации. Режим реализации технологии зависит от объемно-временных особенностей решаемых задач: периодичности и срочности, требований к быстроте обработки сообщений, а также от режимных возможностей технических средств, и в первую очередь ЭВМ. Существуют: пакетный режим; режим реального масштаба времени; режим разделения времени; регламентный режим; запросный; диалоговый; телеобработки; интерактивный; однопрограммный; многопрограммный (мультиобработка).

Пакетный режим. При использовании этого режима пользователь не имеет непосредственного общения с ЭВМ. Сбор и регистрация информации, ввод и обработка не совпадают по времени. Вначале пользователь собирает информацию, формируя ее в пакеты в соответствии с видом задач или каким-то др. признаком. (Как правило, это задачи неоперативного характера, с долговременным сроком действия результатов решения). После завершения приема информации производится ее ввод и обработка, т.е., происходит задержка обработки. Этот режим используется, как правило, при централизованном способе обработки информации.

Диалоговый режим (запросный) режим, при котором существует возможность пользователя непосредственно взаимодействовать с вычислительной системой в процессе работы пользователя. Программы обработки данных находятся в памяти ЭВМ постоянно, если ЭВМ доступна в любое время, или в течение определенного промежутка времени, когда ЭВМ доступна пользователю. Взаимодействие пользователя с вычислительной системой в виде диалога может быть многоаспектным и определяться различными факторами: языком общения, активной или пассивной ролью пользователя; кто является инициатором диалога - пользователь или ЭВМ; временем ответа; структурой диалога и т.д. Если инициатором диалога является пользователь, то он должен обладать знаниями по работе с процедурами, форматами данных и т.п. Если инициатор - ЭВМ, то машина сама сообщает на каждом шаге, что нужно делать с разнообразными возможностями выбора. Этот метод работы называется “выбором меню”. Он обеспечивает поддержку действий пользователя и предписывает их последовательность. При этом от пользователя требуется меньшая подготовленность.

Диалоговый режим требует определенного уровня технической оснащенности пользователя, т.е. наличие терминала или ПЭВМ, связанных с центральной вычислительной системой каналами связи. Этот режим используется для доступа к информации, вычислительным или программным ресурсам. Возможность работы в диалоговом режиме может быть ограничена во времени начала и конца работы, а может быть и неограниченной.



Иногда различают диалоговый и запросный режимы, тогда под запросным понимается одноразовое обращение к системе, после которого она выдает ответ и отключается, а под диалоговым - режим, при которым система после запроса выдает ответ и ждет дальнейших действий пользователя.

Режим реального масштаба времени. Означает способность вычислительной системы взаимодействовать с контролируемыми или управляемыми процессами в темпе протекания этих процессов. Время реакции ЭВМ должно удовлетворять темпу контролируемого процесса или требованиям пользователей и иметь минимальную задержку. Как правило, этот режим используется при децентрализованной и распределенной обработке данных.

Режим телеобработки дает возможность удаленному пользователю взаимодействовать с вычислительной системой.

Интерактивный режим предполагает возможность двустороннего взаимодействия пользователя с системой, т.е. у пользователя есть возможность воздействия на процесс обработки данных.

Режим разделения времени предполагает способность системы выделять свои ресурсы группе пользователей поочередно. Вычислительная система настолько быстро обслуживает каждого пользователя, что создается впечатление одновременной работы нескольких пользователей. Такая возможность достигается за счет соответствующего программного обеспечения.

Однопрограммный и многопрограммный режимы характеризуют возможность системы работать одновременно по одной или нескольким программам.

Регламентный режим характеризуется определенностью во времени отдельных задач пользователя. Например, получение результатных сводок по окончании месяца, расчет ведомостей начисления зарплаты к определенным датам и т.д. Сроки решения устанавливаются заранее по регламенту в противоположность к произвольным запросам.



2 Способы обработки данных

Различаются следующие способы обработки данных: централизованный, децентрализованный, распределенный и интегрированный.

Централизованная предполагает наличие. При этом способе пользователь доставляет на ВЦ исходную информацию и получают результаты обработки в виде результативных документов. Особенностью такого способа обработки являются сложность и трудоемкость налаживания быстрой, бесперебойной связи, большая загруженность ВЦ информацией (т.к. велик ее объем), регламентацией сроков выполнения операций, организация безопасности системы от возможного несанкционированного доступа.

Децентрализованная обработка. Этот способ связан с появлением ПЭВМ, дающих возможность автоматизировать конкретное рабочие место.

Распределенный способ обработки данных основан на распределении функций обработки между различными ЭВМ, включенными в сеть. Этот способ может быть реализован двумя путями: первый предполагает установку ЭВМ в каждом узле сети (или на каждом уровне системы), при этом обработка данных осуществляется одной или несколькими ЭВМ в зависимости от реальных возможностей системы и ее потребностей на текущий момент времени. Второй путь - размещение большого числа различных процессоров внутри одной системы. Такой путь применяется в системах обработки банковской и финансовой информации, там, где необходима сеть обработки данных (филиалы, отделения и т.д.). Преимущества распределенного способа: возможность обрабатывать в заданные сроки любой объем данных; высокая степень надежности, так как при отказе одного технического средства есть возможность моментальной замены его на другой; сокращение времени и затрат на передачу данных; повышение гибкости систем, упрощение разработки и эксплуатации программного обеспечения и т.д. Распределенный способ основывается на комплексе специализированных процессоров, т.е. каждая ЭВМ предназначена для решения определенных задач, или задач своего уровня.

Интегрированный способ обработки информации. Он предусматривает создание информационной модели управляемого объекта, то есть создание распределенной базы данных. Такой способ обеспечивает максимальное удобство для пользователя. С одной стороны, базы данных предусматривают коллективное пользование и централизованное управление. С другой стороны, объем информации, разнообразие решаемых задач требуют распределения базы данных. Технология интегрированной обработки информации позволяет улучшить качество, достоверность и скорость обработки, т.к. обработка производится на основе единого информационного массива, однократно введенного в ЭВМ. Особенностью этого способа является отделение технологически и по времени процедуры обработки от процедур сбора, подготовки и ввода данных.

3 Комплекс технических средств обработки информации

Комплекс технических средств обработки информации – это совокупность автономных устройств сбора, накопления, передачи, обработки и представления информации, а также средств оргтехники, управления, ремонтно-профилактических и других. К комплексу технических средств предъявляют ряд требований:

Обеспечение решения задач с минимальными затратами, необходимой точности и достоверности

Возможность технической совместимости устройств, их агрегативность

Обеспечение высокой надежности

Минимальные затраты на приобретения

Отечественной и зарубежной промышленностью выпускается широкая номенклатура технических средств обработки информации, различающихся элементной базой, конструктивным исполнением, использованием различных носителей информации, эксплуатационными характеристиками и др.

4 Классификация технических средств обработки информации

Технические средства обработки информации делятся на две большие группы. Это основные и вспомогательные средства обработки.

Вспомогательные средства – это оборудование, обеспечивающее работоспособность основных средств, а также оборудование, облегчающее и делающее управленческий труд комфортнее. К вспомогательным средствам обработки информации относятся средства оргтехники и ремонтно-профилактические средства. Оргтехника представлена весьма широкой номенклатурой средств, от канцелярских товаров, до средств доставления, размножения, хранения, поиска и уничтожения основных данных, средств административно производственной связи и так далее, что делает работу управленца удобной и комфортной.

Основные средства – это орудия труда по автоматизированной обработке информации. Известно, что для управления теми или иными процессами необходима определенная управленческая информация, характеризующая состояния и параметры технологических процессов, количественные, стоимостные и трудовые показатели производства, снабжения, сбыта, финансовой деятельности и т.п. К основным средствам технической обработки относятся: средства регистрации и сбора информации, средства приема и передачи данных, средства подготовки данных, средства ввода, средства обработки информации и средства отображения информации. Ниже, все эти средства рассмотрены подробно.

Получение первичной информации и регистрация является одним из трудоемких процессов. Поэтому широко применяются устройства для механизированного и автоматизированного измерения, сбора и регистрации данных. Номенклатура этих средств весьма обширна. К ним относят: электронные весы, разнообразные счетчики, табло, расходомеры, кассовые аппараты, машинки для счета банкнот, банкоматы и многое другое. Сюда же относят различные регистраторы производства, предназначенные для оформления и фиксации сведений о хозяйственных операциях на машинных носителях.

Средства приема и передачи информации. Под передачей информации понимается процесс пересылки данных (сообщений) от одного устройства к другому. Взаимодействующая совокупность объектов, образуемые устройства передачи и обработки данных, называется сетью. Объединяют устройства, предназначенные для передачи и приема информации. Они обеспечивают обмен информацией между местом её возникновения и местом её обработки. Структура средств и методов передачи данных определяется расположением источников информации и средств обработки данных, объемами и временем на передачу данных, типами линий связи и другими факторами. Средства передачи данных представлены абонентскими пунктами (АП), аппаратурой передачи, модемами, мультиплексорами.

Средства подготовки данных представлены устройствами подготовки информации на машинных носителях, устройства для передачи информации с документов на носители, включающие устройства ЭВМ. Эти устройства могут осуществлять сортировку и корректирование.

Средства ввода служат для восприятия данных с машинных носителей и ввода информации в компьютерные системы

Средства обработки информации играют важнейшую роль в комплексе технических средств обработки информации. К средствам обработки можно отнести компьютеры, которые в свою очередь разделим на четыре класса: микро, малые (мини); большие и суперЭВМ. Микро ЭВМ бывают двух видов: универсальные и специализированные.

И универсальные и специализированные могут быть как многопользовательскими - мощные ЭВМ, оборудованные несколькими терминалами и функционирующие в режиме разделения времени (серверы), так и однопользовательскими (рабочие станции), которые специализируются на выполнении одного вида работ.

Малые ЭВМ – работают в режиме разделения времени и в многозадачном режиме. Их положительной стороной является надежность и простота в эксплуатации.

Большие ЭВМ – (мейнфермы) характеризуются большим объемом памяти, высокой отказоустойчивостью и производительностью. Также характеризуется высокой надежностью и защитой данных; возможностью подключения большого числа пользователей.

Супер-ЭВМ – это мощные многопроцессорные ЭВМ с быстродействием 40 млрд. операций в секунду.

Сервер - компьютер, выделенный для обработки запросов от всех станций сети и представляющий этим станциям доступ к системным ресурсам и распределяющий эти ресурсы. Универсальный сервер называется - сервер-приложение. Мощные серверы можно отнести к малым и большим ЭВМ. Сейчас лидером являются серверы Маршалл, а также существуют серверы Cray (64 процессора).

Средства отображения информации используют для вывода результатов вычисления, справочных данных и программ на машинные носители, печать, экран и так далее. К устройствам вывода можно отнести мониторы, принтеры и плоттеры.

Монитор – это устройство, предназначенное для отображения информации, вводимой пользователем с клавиатуры или выводимой компьютером.

Принтер – это устройство вывода на бумажный носитель текстовой и графической информации.

Плоттер – это устройство вывода чертежей и схем больших форматов на бумагу.

Технология - это комплекс научных и инженерных знаний, реализованных в приемах труда, наборах материальных, технических, энергетических, трудовых факторов производства, способах их соединения для создания продукта или услуги, отвечающих определенным требованиям. Поэтому технология неразрывно связана с машинизацией производственного или непроизводственного, прежде всего управленческого процесса. Управленческие технологии основываются на применении компьютеров и телекоммуникационной техники.

Согласно определению, принятому ЮНЕСКО, информационная технология - это комплекс взаимосвязанных, научных, технологических и инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием. Их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сами информационные технологии требуют сложной подготовки, больших первоначальных затрат и наукоемкой техники. Их введение должно начинаться с создания математического обеспечения, формирования информационных потоков в системах подготовки специалистов.

Для автоматизированного сбора исходной информации, ее обра-ботки и выдачи результатов применяется комплекс технических средств, которые должны обладать информационной, программной и технической совместимостью, а также быть адаптированы к условиям функционирования.
При подборе технических средств учитываются следующие исход-ные составляющие:
характер и состав задач, подлежащих выполнению;
носители и объем входной и выходной информации;
формы и способы представления полученных результатов;
согласованность и совместимость действий технических средств различной предназначенности.
В технологический процесс информационного обеспечения входят последовательно задействованные стадии с использованием тех-нических средств, установленной классификации:
средства сбора информации (регистраторы исходных данных, ус-тройства сбора и преобразования информации в форму, удобную для дистанционной передачи и дальнейшей обработки);
средства передачи информации во времени и пространстве (передача осуществляется посредством телефонной, телетайпной и факсимильной связи);
средства накопления и обработки информации (микроЭВМ или компьютеры, выдающие информацию с различной степенью детали-зации и в нужном виде для анализа и последующей реализации);
средства выдачи информации (печатающие устройства, дисплеи, видеотерминалы, предоставляющие выходную результирующую ин-формацию, по которой принимаются соответствующие управленческие решения).
Основными техническими средствами человеко-машинной системы являются компьютеры. Современные компьютеры обладают многофункциональностью, значительным объемом памяти и быстрым действием при запрограммированной обработке данных. Они становятся неотъемлемым рабочим элементом коммерческих работ-ников. Программное и микропроцессорное обеспечение компьютера позволяет оперировать и управлять коммерческими процессами на разных уровнях, осуществлять обмен информацией с участниками торгово-хозяйственных связей.
Коэффициент использования фонда рабочего времени (с учетом затрат времени на профилактику и устранение неисправностей тех-нического средства) равен 0,9.

Лекция № 3

Основные вопросы лекции:

1. Технические средства информатики.

2. Понятие о принципах работы ЭВМ.

3. Основные компоненты персонального компьютера.

Технические средства информатики

ЭВМ - основное техническое средство обработки информации, классифицируемое по ряду признаков, в частности: по назначению, принципу действия , способам организации вычислительного процесса, размерам и вычислительной мощности, функциональным возможностям, способности к параллельному выполнению программ и др.

По назначению ЭВМ можно разделить на три группы:

· универсальные (общего назначения) - предназначены для решения самых разных инженерно-технических задач: экономических, математических, информационных и других задач, отличающихся сложностью алгоритмов и большим объемом обрабатываемых данных. Характерными чертами этих ЭВМ являются высокая производительность, разнообразие форм обрабатываемых данных (двоичных, десятичных, символьных), разнообразие выполняемых операций (арифметических, логических, специальных), большая емкость оперативной памяти, развитая организация ввода-вывода информации;

· проблемно-ориентированные - предназначены для решение более узкого круга задач, связанных обычно с технологическими объектами, регистрацией, накоплением и обработкой небольших объемов данных (управляющие вычислительные комплексы);

· специализированные - для решения узкого круга задач, чтобы снизить сложность и стоимость этих ЭВМ, сохраняя высокую производительность и надежность работы (программируемые микропроцессоры специального назначения, контроллеры, выполняющие функции управления техническими устройствами).

По принципу действия (критерием деления вычислительных машин является форма представления информации, с которой они работают):

· аналоговые вычислительные машины (АВМ) - вычислительные машины непрерывного действия, работают с информацией, представленной в непрерывной форме, т.е. виде непрерывного ряда значений какой-либо физической величины (чаще всего электрического напряжения); в этом случае величина напряжения является аналогом значения некоторой измеряемой переменной. Например, ввод числа 19.42 при масштабе 0.1 эквивалентен подаче на вход напряжения в 1.942 В;

· цифровые вычислительные машины (ЦВМ) - вычислительные машины дискретного действия, работают с информацией, представленной в дискретной, а точнее в цифровой, форме - в виде нескольких различных напряжений, эквивалентных числу единиц в представляемом значении переменной;

· гибридные вычислительные машины (ГВМ) - вычислительные машины комбинированного действия, работают с информацией, представленной и в цифровой, и в аналоговой форме.

АВМ просты и удобны в эксплуатации; программирование задач для решения на них нетрудоемкое, скорость решения изменяется по желанию оператора (больше, чем у ЦВМ), но точность решения очень низкая (относительная погрешность 2-5 %). На АВМ решают математические задачи, содержащие дифференциальные уравнения, не содержащие сложной логики. ЦВМ получили наиболее широкое распространение, именно их подразумевают, когда говорят про ЭВМ. ГВМ целесообразно использовать для управления сложными быстродействующими техническими комплексами.

По поколениям можно выделить следующие группы:

1 поколение. В 1946г. была опубликована идея использования двоичной арифметики (Джон фон Нейман, А. Бернс) и принципа хранимой программы, активно использующиеся в ЭВМ 1 поколения. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах. Задачи решались в основном вычислительного характера , содержащие сложные расчеты, необходимые для прогноза погоды, решения задач атомной энергетики, управления летательной техникой и других стратегических задач.

2 поколение. В 1948 г. Bell Telefon Laboratory объявила о создании первого транзистора. По сравнению с ЭВМ предыдущего поколения улучшились все технические характеристики. Для программирования используются алгоритмические языки, предприняты первые попытки автоматического программирования.

3-е поколение. Особенностью ЭВМ 3 поколения считается применение в их конструкции интегральных схем, а в управлении работой компьютера - операционных систем. Появились возможности мультипрограммирования, управления памятью, устройствами ввода-вывода. Восстановление после сбоев взяла на себя операционная система. С середины 60-х до середины 70-х годов важным видом информационных услуг стали базы данных, содержащие разные виды информации по всевозможным отраслям знаний. Впервые возникает информационная технология поддержки принятия решений. Это совсем новый способ взаимодействия человека и компьютера.

4-е поколение. Основные черты этого поколения ЭВМ - наличие запоминающих устройств, запуск ЭВМ с помощью системы самозагрузки из ПЗУ, разнообразие архитектур, мощные ОС, объединение ЭВМ в сети. Начиная с середины 70-х годов, с созданием национальных и глобальных сетей передачи данных ведущим видом информационных услуг стал диалоговый поиск информации в удаленных от пользователя базах данных.

5-е поколение. ЭВМ со многими десятками параллельно работающих процессоров, позволяющих строить эффективные системы обработки знаний; ЭВМ на сверхсложных микропроцессорах с параллельной векторной структурой, одновременно выполняющих десятки последовательных команд программы.

6-е поколение. Оптоэлектронные ЭВМ с массовым параллелизмом и нейронной структурой - с сетью из большого числа (десятки тысяч) несложных микропроцессоров, моделирующих структуру нейронных биологических систем.

Классификация ЭВМ по размерам и функциональным возможностям .

Большие ЭВМ. Исторически первыми появились большие ЭВМ, элементная база которых прошла путь от электронных ламп до интегральных схем со сверх высокой степенью интеграции. Однако их производительность оказалась недостаточной для моделирования экологических систем, задач генной инженерии, управления сложными оборонными комплексами и др.

Большие ЭВМ часто называют за рубежом MAINFRAME и слухи об их смерти сильно преувеличены.

Как правило, они имеют:

· производительность не менее 10 MIPS (миллионов операций с плавающей точкой в секунду)

· основную память от 64 до 10000 МВ

· внешнюю память не менее 50 ГВ

· многопользовательский режим работы

Основные направления использования - это решение научно-технических задач, работа с большими БД, управление вычислительными сетями и их ресурсами в качестве серверов.

Малые ЭВМ. Малые (мини) ЭВМ - надежные, недорогие и удобные в эксплуатации, обладают несколько более низкими, по сравнению с большими ЭВМ возможностями.

Супер-мини ЭВМ имеют:

· емкость основной памяти - 4-512 МВ

· емкость дисковой памяти - 2 - 100 ГВ

· число поддерживаемых пользователей - 16-512.

Мини-ЭВМ ориентированы на использование в качестве управляющих вычислительных комплексов, в системах несложного моделирования, в АСУП, для управления технологическими процессами.

СуперЭВМ. Это мощные многопроцессорные ЭВМ с быстродействием сотни миллионов - десятки миллиардов операций в секунду.

Достичь такую производительность на одном микропроцессоре по современным технологиям невозможно, в виду конечного значения скорости распространения электромагнитных волн (300000 км/сек), ибо время распространения сигнала на расстояние в несколько миллиметров становится соизмеримым со временем выполнения одной операции. Поэтому суперЭВМ создают в виде высокопараллельных многопроцессорных вычислительных систем.

В настоящее время в мире насчитывается несколько тысяч суперЭВМ, начиная от простеньких офисных Cray EL до мощных Cray 3, SX-X фирмы NEC, VP2000 фирмы Fujitsu (Япония), VPP 500 фирмы Siemens (Германия).

Микро ЭВМ или персональный компьютер. ПК должен иметь характеристики, удовлетворяющие требованиям общедоступности и универсальности:

· малую стоимость

· автономность эксплуатации

· гибкость архитектуры, дающую возможность адаптироваться в сфере образования, науки, управления, в быту;

· дружественность операционной системы;

· высокую надежность (более 5000 часов наработки на отказ).

Большинство из них имеют автономное питание от аккумуляторов, но могут подключаться к сети.

Специальные ЭВМ. Специальные ЭВМ ориентированы на решение специальных вычислительных задач или задач управления. В качестве специальной ЭВМ можно рассматривать также электронные микрокалькуляторы. Программа, которую выполняет процессор, находится в ПЗУ или в ОП, а т.к. машина решает, как правило, одну задачу, то меняются только данные. Это удобно (программу хранить в ПЗУ), в этом случае повышается надежность и быстродействие ЭВМ. Такой подход часто используется в бортовых ЭВМ, управлении режимом работы фотоаппарата, кинокамеры, в спортивных тренажерах.

Понятие о принципах работы ЭВМ

В основу архитектуры современных персональных компьютеров положен магистрально-модульный принцип. Модульный принцип позволяет потребителю самому комплектовать нужную ему конфигурацию компьютера и производить при необходимости ее модернизацию. Модульная организация компьютера опирается на магистральный (шинный) принцип обмена информацией между устройствами.

Магистраль включает в себя три многоразрядные шины:

· шину данных,

· шину адреса

· и шину управления.

Шины представляют собой многопроводные линии.

Шина данных. По этой шине данные передаются между различными устройствами. Например, считанные из оперативной памяти данные могут быть переданы процессору для обработки, а затем полученные данные могут быть отправлены обратно в оперативную память для хранения. Таким образом, данные по шине данных могут передаваться от устройства к устройству в любом направлении.

Разрядность шины данных определяется разрядностью процессора, т.е. количеством двоичных разрядов, которые процессор обрабатывает за один такт. Разрядность процессоров постоянно увеличивалась по мере развития компьютерной техники.

Шина адреса. Выбор устройства или ячейки памяти, куда пересылаются или откуда считываются данные по шине данных, производит процессор. Каждое устройство или ячейка оперативной памяти имеет свой адрес. Адрес передается по адресной шине, причем сигналы по ней передаются в одном направлении от процессора к оперативной памяти и устройствам (однонаправленная шина). Разрядность шины адреса определяет адресное пространство процессора, т.е. количество ячеек оперативной памяти, которые могут иметь уникальные адреса. Разрядность шины адреса постоянно увеличивалась и в современных персональных компьютерах составляет 32 бит.

Шина управления. По шине управления передаются сиг­налы, определяющие характер обмена информацией по ма­гистрали. Сигналы управления определяют какую операцию считывание или запись информации из памяти нужно производить, синхронизируют обмен информацией между устройствами и т.д.

В основу построения подавляющего большинства компьюте­ров положены следующие общие принципы, сформулированные в 1945 г. американским ученымДжоном фон Нейманом.

1. Принцип программного управления. Программа состоит из набора команд, выполняющихся процессором автоматически в определенной последовательности.Выборка программы из памяти осуществляется с помощью счетчика команд. Этот регистр процессора последовательно увеличивает хранимый в нем адрес очередной команды на длину команды. А так как команды программы расположены в памяти друг за другом, то тем самым организуется выборка цепочки команд из последовательно расположенных ячеек памяти. Если же нужно после выполнения команды перейти не к следующей, а к какой-то другой, используются командыусловного илибезусловного перехода, которые заносят в счетчик команд номер ячейки памяти, содержащей следующую команду. Выборка команд из памяти прекращается после достижения и выполнения команды «стоп». Таким образом,процессор исполняет программу автоматически, без вмешательства человека.

2. Принцип однородности памяти. Программы и данные хранятся в одной и той же памяти, поэтому компьютер не различает, что хранится в данной ячейке памяти - число, текст или команда. Над командами можно выполнять такие же действия, как и над данными.Это открывает целый ряд возможностей. Например,программа в процессе своего выполнения также может подвергаться переработке, что позволяет задавать в самой программе правила получения некоторых ее частей (так в программе организуется выполнение цик­лов и подпрограмм).Более того, команды одной программы могут быть получены как результаты исполнения другой программы. На этом принципе основаныметоды трансляции - перевода текста программы с языка программирования высокого уровня на язык конкретной машины.

3. Принцип адресности. Структурно основная память состоит из перенумерованных ячеек. Процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти так, чтобы к запомненным в них значениям можно было впоследствии обращаться или менять их в процессе выполнения программ с использованием присвоенных имен. Компьютеры, построенные на перечисленных принципах, относятся к типуфон-неймановских. Но существуют компьютеры, принципиально отличающиеся от фон-неймановских. Для них, например, может не выполняться принцип программного управления, т. е. они могут работать без счетчика команд, указывающего текущую выполняемую команду программы. Для обращения к какой-либо переменной, хранящейся в памяти, этим компьютерам необязательно давать ей имя. Такие компьютеры называются не фон-неймановскими.

Основные компоненты персонального компьютера

Компьютер имеет модульную структуру, которая включает:

Системный блок

Металлический корпус с блоком питания. В настоящее время системные блоки выпускают стандарта ATX, размером 21x42x40см, блок питания - 230Вт, рабочее напряжение 210-240В, отсеки 3x5.25"" и 2x3.5"", автоматическое выключение по завершению работы. В корпусе также располагается динамик.

1.1. Системная (материнская) плата (motherboard), на которой располагаются различные устройства, входящие в системный блок. Конструкция материнской платы сделана по принципу модульного конструктора, что позволяет каждому пользователю достаточно легко заменять вышедшие из строя или устаревшие элементы системного блока. На системной плате крепятся:

а) Процессор (CPU - Central Processing Unit) - большая интегральная схема на кристалле. Выполняет логические и арифметические операции, осуществляет управление функционированием компьютера. Процессор характеризуется фирмой изготовителем и тактовой частотой . Наиболее известными изготовителями являются Intel и AMD. Процессоры имеют собственные имена Athlon, Pentium 4, Celeron и т.д. Тактовая частота определяет быстродействие процессора и измеряется в Герцах (1\с). Так, Pentium 4 2,2 ГГц, имеет тактовую 2200000000 Гц (выполняет более 2-х миллиардов операций в секунду). Еще одна характеристика процессора – это наличие кэш-памяти (cache) – еще более быстрая, чем RAM память, в которой хранятся наиболее часто используемые CPU данные. Кэш является буфером между процессором и ОЗУ. Кэш полностью прозрачен, не обнаруживается программно. Кэш снижает общее количество тактов ожидания процессора при обращении к ОЗУ.

б) Сопроцессор (FPU - Floating Point Unit). Встроен в CPU. Выполняет арифметические операции с плавающей запятой.

в) Контроллеры - микросхемы, отвечающие за работу различных устройств компьютера (клавиатуры, HDD, FDD, мыши и т.д.). Сюда же отнесем и микросхему ПЗУ (Постоянное Запоминающее Устройство) в которой хранится ROM-BIOS.

г) Слоты (шины) - разъемы (ISA, PCI, SCSI, AGP и т.д.) под различные устройства (оперативная память, видеокарта и т.п.).

Шина - собственно, набор проводов (линий), соединяющий различные компоненты компьютера для подвода к ним питания и обмена данными. Существующие шины: ISA (частота – 8МГц, количество разрядов – 16, скорость передачи данных – 16Мб/с),

д) Оперативное запоминающее устройство (ОЗУ, RAM - Random Access Memory (типы SIMM, DIMM (Dual Inline Memory Module), DRAM (Dynamic RAM), SDRAM (Synchronous DRAM), RDRAM)) - микросхемы, служащие для кратковременного запоминания промежуточных команд, значений вычислений, производимых CPU, а также других данных. Там же для повышения быстродействия хранятся исполняемые программы. ОЗУ - быстродействующая память со временем регенерации 7·10 -9 сек. Емкость до 1Гб. Питание 3.3В.

е) Видеокарта (видеоакселератор) - устройство, расширяющее возможности и ускоряющее работу с графикой. Видеокарта имеет свою видеопамять (16, 32, 64, 128Мб) для хранения графической информации и графический процессор (GPU – Graphic Processor Unit), берущий на себя вычисления при работе с 3D графикой и видео. GPU работает на частоте 350МГц и содержит 60млн. транзисторов. Поддерживается разрешение 2048х1536 60Гц при 32 битном цвете. Производительность: 286 млн. пикселей/сек. Может иметь выход на TV и видеовход. Поддерживаются эффекты: прозрачность и просвечивание, затенение (получение реалистичного освещения), блики, цветовое освещение (источники света разных цветов), смазывание, объемность, затуманивание, отражение, отражение в кривом зеркале, дрожание поверхностей, искажение изображения, вызываемое водой и теплым воздухом, трансформация искажений по шумовым алгоритмам, имитация туч на небе и др.

ж) Звуковая карта - устройство, расширяющее звуковые возможности компьютера. Звуки генерируются с помощью записанных в память (32Мб) образцов звуков разных тембров. Одновременно воспроизводится до 1024 звуков. Поддерживаются различные эффекты. Могут иметь линейный вход/выход, выход на наушники, микрофонный вход, разъем для джойстика, вход для автоответчика, аналоговый и цифровой вход CD аудио.

з) Сетевая карта - устройство, отвечающее за подключение компьютера к сети для возможности обмена информацией.

Кроме материнской платы в системном блоке находятся:

1.2. Накопитель на жестком магнитном диске (винчестер, HDD - Hard Disk Drive) - герметично запаянный корпус с вращающимися магнитными дисками и магнитными головками. Служит для долговременного хранения информации в виде файлов (программы, тексты, графика, фотография, музыка, видео). Емкость - 75 Гб, размер буфера 1-2Мб, скорость передачи данных 66.6Мб/сек. Максимальная скорость вращения шпинделя - 10 000, 15000 об./мин. HDD фирмы IBM имеет емкость 120Гб, скорость вращения шпинделя 7200 об/мин.

1.3. Накопитель на гибком магнитном диске (дисковод, флоппи, FDD - Floppy Disk Drive) - устройство, служащее для записи/считывания информации с дискет, которые можно переносить с компьютера на компьютер. Емкость дискеты: 1.22Мб (размер 5.25"" (1""=2.54см)), 1.44Мб (размер 3.5""). 1.44Мб эквивалентно 620 страницам текста.

1.4. CD-ROM (Compact Disc Read Only Memory) - устройство, служащее только для считывания информации с CD. Двоичная информация с поверхности CD считывается лучом лазера. Емкость CD - 640Мб=74мин. музыки=150000стр. текста. Скорость вращения шпинделя 8560 об/мин., размер буфера 128Кб, максимальная скорость передачи данных 33.3Мб/сек. Скачки и срывы при воспроизведении видео являются причинами не заполнения или переполнения буфера, служащего для промежуточного хранения передаваемых данных. Имеются регулятор громкости и выход на наушники (для прослушивания музыкальных CD).

1.5. CD-R (Compact Disc Recorder) - устройство, служащее для считывания и однократной записи информации на CD. Запись основана на изменении отражающих свойств вещества подложки CD под действием луча лазера.

1.6. DVD-ROM диски (цифровые видео диски) имеют гораздо большую информационную емкость (до 17 Гбайт), т.к. информация может быть записана на двух сторонах, в два слоя на одной стороне, а сами дорожки имеют меньшую толщину.

Первое поколение DVD-ROM накопителей обеспечивало скорость считывания информации примерно 1,3 Мбайт/с. В настоящее время 5-скоростные DVD-ROM достигают скорости считывания до 6,8 Мбайт/с.

Существуют DVD-R диски (R - recordable, записываемый), которые имеют золотистый цвет. Специальные DVD-R дисководы обладают достаточно мощным лазером, который в процессе записи информации меняют отражающую способность участков поверхности записываемого диска. Информация на таких дисках может быть записана только один раз.

1.7. Существуют также CD-RW и DVD-RW диски (RW - Rewritable, перезаписываемый), которые имеют «платиновый» оттенок. Специальные CD-RW и DVD-RW дисководы в процессе записи информации также меняют отражающую способность отдельных участков поверхности дисков, однако информация на таких дисках может быть записана многократно. Перед перезаписью записанную информацию «стирают» путем нагревания участков поверхности диска с помощью лазера.

Состав ЭВМ кроме системного блока входят следующие устройства ввода-вывода информации.

2. Монитор (дисплей) - устройство вывода графической информации. Есть цифровые и жидкокристаллические. Размеры по диагонали - 14"", 15"", 17"", 19"", 21"", 24"". Размер пикселя - 0.2-0.3мм. Частота смены кадров - 77Гц при разрешении 1920x1200 пиксель, 85Гц при 1280x1024, 160Гц при 800x600. Количество цветов определяется количеством разрядов на один пиксель и может быть 256 (2 8 , где 8 - количество разрядов), 65536 (2 16 , режим High Color), 16 777 216 (2 24 , режим True Color, может быть и 2 32). Есть электронно-лучевые и LCD мониторы. Мониторы используют RGB систему образования цвета, т.е. цвет получается смешением 3-х основных цветов: красного (Red), зеленого (Green) и синего (Blue).

3. Клавиатура (keyboard) - устройство ввода команд и символьной информации (108 клавиш). Подключается к последовательному интерфейсу (COM порт).

4. Манипулятор типа мышь (mouse) - устройство ввода команд. Стандартом является 3-х кнопочная мышь с колесом прокрутки (scrolling).

5. Печатающее устройство (принтер) - устройство для вывода информации на бумагу, пленку или другую поверхность. Подключается к параллельному интерфейсу (LPT порт). USB (Universal Serial Bus) – универсальная последовательная шина заменившая устаревшие COM и LPT порты.

а) Матричный . Изображение формируется иголками, пробивающими красящую ленту.

б) Струйный . Изображение формируется выбрасываемыми из сопел (до 256) микрокаплями краски. Скорость движения капель до 40м/с.

в) Лазерный . Изображение на бумагу переносится со специального барабана, наэлектризованного лазером, к которому притягиваются частички краски (тонера).

6. Сканер - устройство для ввода изображений в компьютер. Есть ручной, планшетный, барабанный.

7. Модем (МОдулятор-ДЕМодулятор) - устройство, позволяющее обмениваться информацией между компьютерами через аналоговые или цифровые каналы. Модемы отличаются друг от друга максимальной скоростью передачи данных (2400, 9600, 14400, 19200, 28800, 33600, 56000 бит в секунду), поддерживаемыми протоколами связи. Бывают модемы внутренние и внешние.

В современном мире очень важно вовремя получать точную информацию. От этого зависит жизнедеятельность людей. По этой причине с каждым днем появляется все больше самых разных устройств, которые собирают и обрабатывают данные. Что же следует понимать под этими процессами?

Процедура получения данных из внешнего мира

Сбором информации может заниматься человек. А можно воспользоваться техническими средствами и системами. В таких ситуациях этот процесс будет происходить аппаратно. К примеру, пользователю удалось получить данные о маршрутах поездов самостоятельно, при помощи изучения расписания на вокзале. То же самое он может сделать с помощью телефона или компьютера.

Это говорит о том, что процедура сбора информации представляет собой достаточно сложный программно-аппаратный комплекс. Что же следует понимать под таким процессом? Это процедура получения каких-либо данных, поступающих из внешнего мира. Подобная информация приводится к стандартному для прикладных систем виду. Современные технические устройства не только собирают данные, кодируют их и выводят на обзор. Также происходит обработка информации.

Использование различных способов работы с данными. Технология работы с ними

Под обработкой следует понимать упорядоченный процесс получения требуемой информации из набора определенных данных с помощью специальных алгоритмов. Эта процедура может быть выполнена несколькими способами. Различают такие средства обработки информации, как централизованное, децентрализованное, распределенное и интегрированное.

Использование вычислительных центров для обработки данных

Централизованная обработка подразумевает, что в наличии должен быть вычислительный центр (ВЦ). При таком способе исходные данные пользователем доставляются на ВЦ. После этого ему предоставляется результат в виде определенной документации.

Отличительной чертой данного способа является трудоемкость. Достаточно сложно наладить быструю бесперебойную связь. Кроме того, имеет место большая загруженность центра информацией. К тому же регламентированы сроки выполнения поставленных задач, и не всегда их получается выполнить вовремя. Такая обработка информации сложная еще и по причине наличия средств безопасности, которые предотвращают возможный несанкционированный доступ.

В чем заключается смысл децентрализованного метода?

В момент появления ПЭВМ возник децентрализованный способ. Он предоставляет возможность автоматизировать определенное рабочее место. На сегодняшний день имеется 3 разновидности технологий подобной обработки данных. В основе первой лежат персональные компьютеры, не объединенные в локальную сеть. Подобная технология обработки информации подразумевает хранение данных в отдельных файлах. Для того чтобы получить показатели, необходимо произвести перезапись файлов на компьютер. К отрицательным моментам можно отнести тот факт, что отсутствует взаимоувязка задач. Невозможно обрабатывать большие объемы информации. К тому же данная обработка информации отличается низкой защищенностью от взлома.

Вторая технология основывается на компьютерах, которые объединяются в локальную сеть, что приводит к формированию единых файлов данных. Однако с большим потоком информации в такой ситуации справиться не получится. Третья технология основывается на компьютерах, объединенных в локальную сеть, в которую также входят сервера.

Работа с большим объемом данных

Распределенная обработка информации основывается на том, что функции делятся между разными ЭВМ, которые подключены к одной сети. Такой способ можно реализовать за счет двух путей:

  1. Необходимо установить ЭВМ в каждом отдельном узле сети. В такой ситуации обработка будет происходить с помощью одного или нескольких компьютеров. Все зависит от реальных возможностей системы, а также от потребностей.
  2. Необходимо размещать большую часть разнообразных процессов внутри одной системы. Подобный путь используется при обработке банковской информации при наличии филиалов или отделений.

Распределенная обработка информации позволяет оперировать данными в любом объеме в заданные сроки. Присутствует достаточно высокий уровень надежности. В значительной степени сокращается время и затраты на передачу информации. Повышается гибкость систем и упрощается разработка с использованием программных средств. В основе распределенного способа лежат специализированные процессы. Другими словами, каждая ЭВМ призвана решать свою задачу.

Использование баз данных для хранения и обработки информации

Интегрированный способ подразумевает формирование информационной модели управляемого объекта. Другими словами, создается распределенная база данных. Подобный метод позволяет сделать процесс обработки информации наиболее удобным для пользователя. Базу данных одновременно применять может не один человек. Но большой объем информации требует распределения. За счет данного метода можно заметно улучшить качество, достоверность и скорость обработки. Это связано с тем, что методика основывается на едином информационном массиве, который однократно вводится в ЭВМ.

Выше были описаны методы обработки информации. Но с помощью каких технических средств происходит этот процесс? Следует подробнее остановиться на этом вопросе.

Что подразумевают под собой технические средства?

Под техническими средствами следует понимать комплекс автономных видов оборудования, позволяющего собирать, накапливать, передавать, обрабатывать и выводить данные, а также совокупность оргтехники, средств управления, ремонтно-профилактических устройств и т. д. Ко всем вышеперечисленным системам предъявляются следующие требования:

  1. Технические средства, в основе которых лежат разные методы обработки информации, должны обеспечивать решение задачи с минимально возможными потерями. Необходимо добиться максимальной точности и достоверности.
  2. Требуется техническая совместимость, агрегативность устройств.
  3. Должна быть обеспечена высокая надежность.
  4. Затраты на покупку должны быть минимальными.

Отечественная и зарубежная промышленность выпускает просто огромный набор технических средств, помогающих обрабатывать информацию. Они могут отличаться друг от друга элементной базой, конструкцией, применением самых разных носителей данных, а также эксплуатационными параметрами и т. д.

Технические средства могут быть:

  1. Вспомогательными.
  2. Основными.

Что следует понимать под вспомогательными видами устройств?

В первом случае это оборудование, которое обеспечивает работоспособность базовых средств. Также к вспомогательным относятся устройства, способствующие упрощению управленческого труда. Они делают его более комфортным. Это может быть оргтехника и ремонтно-профилактические средства. Организационные устройства включают в себя большое количество номенклатурных средств, начиная с канцелярской продукции и заканчивая устройствами доставки, размножения, удаления, поиска и хранения данных. Речь идет обо всех видах оборудований, за счет которых деятельность управленца становится легче, удобнее и комфортнее.

Что входит в комплекс основных видов устройств?

Технология обработки информации может базироваться на основных средствах. Под ними следует понимать устройства, направленные на автоматизацию работы с данными. Для того чтобы можно было наладить контроль над определенными процессами, требуется обладать некоторыми данными управленческого характера. За счет них появится возможность охарактеризовать состояние, параметры технологических процессов, количественные и стоимостные показатели.

Основные системы обработки информации могут включать в себя:

  1. Устройства, регистрирующие и осуществляющие сбор данных.
  2. Оборудование, которое принимает и передает данные.
  3. Средства, подготавливающие данные.
  4. Устройства ввода, обработки и отображения данных.

Заключение

В данной статье была рассмотрена такая тема, как сбор и обработка информации. Было решено заострить внимание именно на работе с данными. Это достаточно актуальная и сложная задача, которая требует высокой надежности, точности и достоверности. Надеемся, что данный обзор помог разобраться, что же собой представляет процесс обработки информации.

Система сбора и обработки информации (ССОИ) предназначена для интеграции систем Инженерно-технических средств охраны (ИТСО) в единый комплекс с целью повышения эффективности их использования и комплексного предоставления информации о работе систем ИТСО оперативному дежурному, ответственным должностным лицам и руководству. Особенно эффективно применение ССОИ на территориально разнесенных объектах, имеющих несколько зданий или филиалов. В этом случае ССОИ позволяет создать в организации единое информационное пространство безопасности, что в любой момент времени позволяет иметь актуальную информацию о состоянии систем безопасности объекта и оперативно реагировать на происходящие в системе события.

Целью установки системы сбора и обработки информации является:

Регистрация информации о работе систем ИТСО, рабочих мест и оборудования систем ИТСО, изменениях режимов работы систем ИТСО;

Информирование оператора дежурной службы о работе систем ИТСО, тревогах и внештатных ситуациях;

Обеспечение записи и фиксации информации о событиях систем ИТСО и работе системы ССОИ в электронных цифровых архивах хранения данных.

Автоматизированный контроль работы систем ИТСО, сверка с требуемыми параметрами работы систем ИТСО (эталонными) и информирование оператора дежурной службы об обнаруженных расхождениях.

Типичная система сбора и обработки информации на уровне организации подсистем обеспечивает:

Сбор и обработку информации системы охранно-тревожной сигнализации (СОТС);

Сбор и обработку информации системы пожарной сигнализации (СПС); СМ. Примеры применения интегральных систем безопасности

Сбор и обработку информации, управление системой контроля и управления доступом (СКУД) , включающей в себя такие подсистемы, как подсистема управления аварийными выходами и электронные сейфы ключей. СМ. Презентацию IP-СКУД IDmatic

Сбор и обработку информации, а также управление телевизионной системой охраны и наблюдения (ТСОН), или системой видеонаблюдения высокого разрешения;

Организацию подсистемы бюро пропусков , включая подсистему электронного заказа пропусков;

Организацию подсистемы контроля прохода сотрудников и посетителей ;

Организацию подсистемы автоматического телефонного оповещения сотрудников ;

Организацию подсистемы мониторинга источников бесперебойного питания и контроля параметров окружающей среды в отдельных помещениях;

Автоматическую комплексную обработку информации, управление подсистемами и контроль выполнения регламентов работы персонала и систем объекта;

ССОИ получает информацию о состоянии средств ИТСО и может реагировать на регистрируемые события. Если средства ИТСО допускают внешнее управление, то специализированные контроллеры ССОИ преобразуют цифровые команды ССОИ в формат данных средств. Иногда обратная связь со средствами ИТСО объекта осуществляется на уровне баз данных. ССОИ позволяет осуществить частичное или полное управление функциями средств ИТСО как ручное, так и автоматическое - на уровне сценариев.

ССОИ выполняет операции считывания или получения по цифровым интерфейсным каналам информации о работе систем ИТСО, обрабатывает полученные данные, записывает их в архивы хранения, отображает состояние систем ИТСО в интерфейсах программ рабочих мест (АРМ) ССОИ, по информации от систем ИТСО выявляет типовые ситуации на объекте с последующим оповещением рабочих мест ССОИ.

Для сбора информации и управления отдельными функциями систем ИТСО используются различные методы подключения интерфейсов и передачи данных.

Отличительной особенностью современных систем сбора и обработки информации является то, что в них в единую систему интегрированы подсистемы обеспечения безопасности производства различных компаний. При этом интегрировать приходится не только современное цифровое оборудование, но и аналоговые системы.

Специалистами ЗАО «МТТ Контрол» был реализован ряд крупных проектов по созданию систем сбора и обработки информации, в том числе и на территориально разнесенных объектах.СМ. РЕАЛИЗОВАННЫЕ ПРОЕКТЫ

Состав системы

Типовая система сбора и обработки информации (ССОИ) строится на базе локальной вычислительной сети (ЛВС) и включает в себя следующее оборудование:

Ø серверные блоки для получения и обработки в реальном времени информации о работе систем ИТСО,

Ø серверные блоки для управления оборудованием ССОИ, обработки информации от различных систем, выявления типовых (штатных и нештатных) ситуаций, выработки реакции системы на возникновение типовых ситуаций,

Ø серверные блоки для хранения архивной информации о событиях систем ИТСО (оперативный и долговременный архивы),

Ø АРМ администратора для для контроля работоспособности, настройки и конфигурирования ССОИ,

Ø АРМ операторов для просмотра информации ССОИ в реальном режиме времени и в архивах, оперативного управления системой,

Ø источники бесперебойного питания для обеспечения непрерывной работы системы,

Ø серверные блоки диагностики оборудования ССОИ,

Ø сетевое оборудование,

Ø кабельные и беспроводные линии связи.

Функции системы

Система сбора и обработки информации (ССОИ) обеспечивает выполнение следующих функций:

1.Интеграция систем ИТСО объекта в единый комплекс.

1.1.Получение информации от следующих систем ИТСО:

Ø система пожарной сигнализации ,

Ø система контроля и управления доступом ,

Ø система видеонаблюдения ,

1.2.Протоколирование (запись и хранение) информации поступающей от систем ИТСО объекта в течение требуемого времени,

1.3.Анализ информации, поступающей от систем ИТСО,

1.4.Выработка реакции системы безопасности в соответствии с заданными сценариями.

1.5.Централизованное управление исполнительными устройствами СКУД и (настройка полномочий доступа пользователей в помещения и к ключам по картам СКУД, блокирование локальных зон внутри объекта при поступлении сигнала Тревоги, разблокирование отдельных точек доступа, разблокирование путей эвакуации при пожаре и т.п.);

1.6.Передача в систему видеонаблюдени я управляющих воздействий для настройки работы оборудования, записи видеоинформации.

1.7.Круглосуточный, непрерывный и автоматический контроль систем ИТСО, источников бесперебойного питания с отображением информации на мониторах автоматизированных рабочих мест (АРМ) системы,

Ø анализ и контроль правильности текущих режимов и настроек систем ИТСО и выдача извещений (сигналов) при выявлении ошибочных и/или неоптимальных режимов и/или настроек;

Ø анализ и контроль реакций систем ИТСО в штатных ситуациях и при происшествиях;

1.8.Анализ текущего состояния технических средств систем ИТСО, источников бесперебойного питания с отображением информации на мониторах АРМ системы,

1.10.Обеспечение наглядного графического интерфейса пользователя для отображения ситуационной обстановки на графических планах и необходимой информации о штатных и тревожных событиях на мониторах АРМ с указанием места, даты, времени и характера событий.

1.12.Интеграция систем безопасности территориально-распределенных объектов в единый комплекс.

2.Администрирование и управление системой

2.1.Настройка всех параметров системы с АРМ администратора.

2.2.Дистанционное управление режимами работы и настройками оборудования ССОИ.

2.3.Простота конфигурирования системы – изменение алгоритмов работы и параметров конфигурации системы без остановки действующей системы.

2.4.Внесение изменений, модернизация, замена версий программного обеспечения без изменения настроенных алгоритмов работы системы;

2.5.Разграничение доступа пользователей (операторов и администраторов) системы к функциям ССОИ. Управление полномочиями пользователей ССОИ.

2.6.Протоколирование действий операторов и администраторов ССОИ во время работы;

2.7.Контроль присутствия операторов и администраторов ССОИ на рабочем месте (периодическое подтверждение с вводом пароля),

2.8.Документирование (протоколирование) всей поступающей информации с указанием места происшедшего события, его характера, времени и даты,

2.9.Запись в архив информации обо всех собственных событиях ССОИ.

2.10.Просмотр архивной информации, управление отображением информации с помощью системы фильтров.

2.11.Подготовка и печать отчетов по различным параметрам.

2.12.Применение унифицированных шаблонов для подготовки и просмотра отчетов,

2.13.Экспорт отчетов в офисные приложения (Word, Excel).

3.Обеспечение надежности и бесперебойности работы ССОИ

3.1.Автоматический текущий контроль функционирования программного обеспечения ССОИ;

3.2.Мониторинг работоспособности оборудования ССОИ;

3.3.Автоматическое резервное копирование баз данных и текущих установок;

3.4.Защита собственных ресурсов ССОИ и технических средств при попытках несанкционированного доступа к ним;

3.5.Синхронизация внутренних часов АРМ и серверного оборудования системы по часам одного (центрального) сервера;

3.6.Синхронизация часов центрального сервера с эталонными сигналами времени, транслируемыми со спутников (GPS).

3.7.Резервирование критичных участков системы с возможностью автоматического восстановления информации в случае сбоев,

3.8.Обеспечение бесперебойного электропитания оборудования системы. Реализация функции дистанционного отключения оборудования в аппаратных стойках.

3.9.Контроль параметров окружающей среды, температуры, влажности и т.п. Отображение на АРМ системы информации о нештатных ситуациях.

Некоторые задачи, которые решает ССОИ XVmatic:

Интеграция систем СОТС, СПС, СКУД, ТСОН объекта в единый комплекс;

Информационная связь c системами СОТС, СПС, СКУД, ТСОН объекта;

Информационная связь, по существующим оптоволоконным каналам связи, с сегментами ССОИ территориально разнесенных зданий заказчика;

Информационная связь с сегментами ССОИ объектов, расположенных в других городах (удаленностью более 500 км от центрального офиса) с возможностью дальнейшего подключения новых сегментов ССОИ;

Протоколирование (запись и хранение) информации поступающей от систем СОТС, СПС, СКУД, ТСОН объекта в течение требуемого времени;

Централизованное управление исполнительными устройствами СКУД и (настройка полномочий доступа пользователей в помещения и к ключам по картам СКУД, блокирование локальных зон внутри объекта при поступлении сигнала Тревоги, разблокирование отдельных точек доступа и т.п.);

Передача в систему ТСОН управляющих воздействий для настройки работы оборудования, записи видеоинформации.

Круглосуточный, непрерывный и автоматический контроль систем СОТС, СПС, СКУД, ТСОН, источников бесперебойного питания с отображением информации на мониторах автоматизированных рабочих мест (АРМ) системы, отображение рекомендаций по действиям дежурной службы. Обработка информации со всех объектов, где установлены сегменты ССОИ;

Анализ текущего состояния технических средств систем СОТС, СПС, СКУД, ТСОН, источников бесперебойного питания с отображением информации на мониторах АРМ системы;

Автоматический и автоматизированный анализ данных о функционировании ИТСО:

Ø анализ и контроль правильности текущих режимов и настроек ИТСО и выдача извещений (сигналов) при выявлении ошибочных и/или неоптимальных режимов и/или настроек;

Ø анализ и контроль реакций ИТСО в штатных ситуациях и при происшествиях;

Ø расчет показателей надежности и качества технической эксплуатации ИТСО;

Ø сравнительный анализ по выбранным параметрам (календарным периодам, техническим средствам, ситуациям, показателям и т.д.).

Автоматический текущий контроль функционирования программного обеспечения ССОИ;

Мониторинг работоспособности оборудования ССОИ;

Обработка и отображение полученной информации в Центре управления безопасности в виде унифицированных табличных отчетов;

Особенности ССОИ XVmatic:

Наглядный графический интерфейс пользователя для отображения ситуационной обстановки на графических планах и необходимой информации о штатных и тревожных событиях на мониторах АРМ с указанием места, даты, времени и характера событий, а также рекомендаций по действиям постов охраны и службы безопасности Центрального офиса в различных ситуациях;

Простота конфигурирования системы – изменение алгоритмов работы и параметров конфигурации системы без остановки действующей системы;

Дистанционное управление режимами работы и настройками оборудования ССОИ;

Внесение изменений, модернизация, замена версий программного обеспечения без изменения настроенных алгоритмов работы системы;

Автоматическое резервное копирование баз данных и текущих установок;

Защита собственных ресурсов ССОИ и технических средств при попытках несанкционированного доступа к ним;

Синхронизация внутренних часов АРМ и серверного оборудования системы по часам одного (центрального) сервера;

Синхронизация часов центрального сервера с эталонными сигналами времени, транслируемыми со спутников (GPS).

Разграничение доступа пользователей (операторов и администраторов) системы к функциям ССОИ;

Доступ к информации о состоянии систем СОТС, СПС, СКУД, ТСОН, протоколам событий в соответствии с категориями доступа к информации;

Протоколирование действий операторов и администраторов ССОИ во время работы;

Контроль присутствия операторов и администраторов ССОИ на рабочем месте (периодическое подтверждение с помощью фотоидентификации или при помощи ввода пароля);

Отображение на экранах мониторов АРМ системы окон со служебными сообщениями о тревогах и внештатных ситуациях с указанием места расположения события на графическом плане, видеоизображения с расположенных рядом видеокамер, звуковым сопровождением;

Документирование (протоколирование) всей поступающей информации с указанием места происшедшего события, его характера, времени и даты;

Подготовка и печать отчетов по событиям ССОИ.

Обработка "событий" по заданным сценариям в ССОИ XVmatic

Основным объектом обработки для современной ССОИ являются «события», каждое из которых обрабатывается по соответствующему сценарию.

Для каждого отрабатываемого события (события, на которое сценарий должен реагировать) в сцене задается одна или более реакций. В зависимости от состава установленного на охраняемом объекте оборудования и от состава охранных подсистем можно задать следующие реакции:

Вывод текстового сообщения на пульт оператора. Вывод текстового сообщения совмещается с показом на пульте оператора расположения устройства, от которого пришло сообщение, на плане объекта. Некоторые текстовые сообщения общего назначения могут не сопровождаться показом плана, если невозможно (или не имеет смысла) определить устройство или если это устройство не привязано к конкретному плану в базе данных оборудования. Текстовые сообщения заранее заносятся в базу данных, и при разработке сценария выбираются из списка. На этапе создания сценариев новое сообщение определить нельзя. Сообщение с планом можно направить на один или несколько пультов управления по выбору.

Вывод звукового сообщения на пульт управления. Сообщение, это заранее записанный звуковой файл. Это может быть некоторый звук или дикторский текст. Все сообщения должны быть заранее зарегистрированы в базе данных. На этапе разработки сценария новое звуковое сообщение ввести нельзя, но любое из сообщений можно прослушать для проверки. Звуковое сообщение можно направить на один или несколько пультов управления по выбору. В списке пультов управления присутствуют только те пульты, на которых есть звуковой адаптер.

Запись заданного количества видео кадров с заданным интервалом времени в видео архив. Указывается камера, с которой производится запись (обычно, не та, событие которой обрабатывается в данной сцене), и номер предустановки, если эта камера управляемая. С помощью этой реакции производится съемка места нарушения, когда "мастером" является датчик охранной сигнализации или считыватель СКД. Возможна съемка места нарушения с помощью управляемой камеры, которая разворачивается в нужном направлении (предустановка) и совершает "наезд". Следует иметь в виду, что для любой видео камеры, задействованной в сценарии (если для нее определена охранная зона), кадры во время нарушения пишутся в видео архив автоматически.